机构地区:[1]宁波大学附属李惠利医院放射科,宁波315041
出 处:《中国医学计算机成像杂志》2025年第1期20-26,共7页Chinese Computed Medical Imaging
基 金:浙江省医药卫生科技项目(2023KY1047)。
摘 要:目的:探讨体素内不相干运动弥散加权成像(IVIM-DWI)影像组学列线图预测高级别脑胶质瘤异柠檬酸脱氢酶1(IDH1)基因突变的价值。方法:回顾性收集2017年1月至2024年3月收治的94例术后病理证实为高级别脑胶质瘤患者的常规MR和IVIM-DWI资料,其中,34例为IDH1基因突变型(IDH1-M),60例为IDH1基因野生型(IDH1-W),以7∶3比例随机划分为训练集(66例)和测试集(28例),使用3D-Slicer软件基于常规MRI图像勾画肿瘤实质区、坏死区、水肿区作为感兴趣区,分别投影到D、D^(*)、f序列,每个感兴趣区中提取出1037个影像组学特征,每例患者共计3111个特征。采用最小冗余最大相关性(mRMR)及最小绝对收缩和选择算子(LASSO)进行特征筛选,建立logistic回归影像组学模型,计算Radscore。纳入筛选后的临床特征,构建临床-影像组学联合模型,生成列线图。分别建立D、D^(*)、f 3个参数模型。采用受试者工作特征(ROC)曲线评价预测模型的效能,以临床决策曲线分析(DCA)评估列线图的实用性。结果:经筛选后将年龄及强化程度这2个因素结合影像组学标签构建了3个参数预测模型。D参数模型训练集及测试集ROC曲线下面积(AUC)值分别为0.94、0.92,D^(*)参数模型AUC值分别为0.84、0.81,f参数模型AUC值分别为0.90、0.85。DCA结果表明,3个参数模型的净收益均较高,D模型的净收益在几乎整个Pt值范围内高于D^(*)及f模型。结论:基于IVIM-DWI影像组学列线图能有效预测高级别脑胶质瘤IDH1基因突变状态,以D参数模型最优。Purpose:To investigate the predictive value based on intravoxel incoherent motion diffusionweighted imaging(IVIM-DWI)radiomics nomogram for isocitrate dehydrogenase 1(IDH1)gene mutations in highgrade gliomas.Methods:We retrospectively analyzed the routine MR and IVIM-DWI data of 94 patients with surgically and pathologically confirmed high-grade brain gliomas from January 2017 to March 2024.The data of 34 patients with mutant-type IDH1(IDH1-M)and 60 patients with wild-type IDH1(IDH1-W)were randomly divided into training(N=66)and test sets(N=28)at a 7∶3 ratio.We used the 3D Slicer software to delineate the tumor parenchyma,necrosis,and edema areas as regions of interest(ROIs)based on conventional MRI images and projected them onto the D,D^(*)and f sequence images.We extracted 1037 radiomic features from each ROI,with a total of 3111 features per patient.The minimum redundancy-maximum relevance(mRMR)algorithm and least absolute shrinkage and selection operator(LASSO)were used to select the optimal features,and a logistic regression(LR)radiomics model was established and the Radscore was calculated.The screened clinical features were incorporated to construct a combined clinical-radiomics model,and a nomogram was generated.Three separate models were established for the parameters D,D^(*),and f.Receiver operating characteristic(ROC)curve was used to evaluate the efficacy of the prediction model,and clinical decision curve analysis(DCA)was used to evaluate the practicability of the nomogram.Results:After selection,age and enhancement level were combined with radiomic features to build three separate predictive models.The area under ROC curve(AUC)values for the training and validation sets of the D parameter model were 0.94 and 0.92,respectively.The AUC values of the D^(*)parameter model were 0.84 and 0.81,respectively,and the AUC values of the f parameter model were 0.90 and 0.85,respectively.Decision curve analysis indicated that all three parameter models were with high net benefits,with the net benefit of the D m
关 键 词:脑胶质瘤 异柠檬酸脱氢酶1 体素内不相干运动 弥散加权成像 列线图
分 类 号:R445.2[医药卫生—影像医学与核医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...