基于DSTFN(Deep Spatio-Temprral Fusion Network)模型的热带气旋轨迹预测方法  

Tropical Cyclone Track Prediction Method Based on DSTFN Model

在线阅读下载全文

作  者:方巍[1,2,3,4] 杜娟 齐媚涵 胡鹏昱 FANG Wei;DU Juan;QI Meihan;HU Pengyu(School of Computer Science/Engineering Research Center of Digital Forensics of Ministry of Education,Nanjing University of Information Science&Technology,Nanjing 210044,China;Key Laboratory of Transportation Meteorology of China Meteorological Administration,Nanjing Joint Institute for Atmospheric Sciences,Nanjing 210041,China;Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET),Nanjing University of Information Science&Technology,Nanjing 210044,China;Provincial Key Laboratory for Computer Information Processing Technology,Soochow University,Suzhou,Jiangsu 215000,China;Shanghai Vocational College of Agriculture and Forestry,Shanghai 201699,China)

机构地区:[1]南京信息工程大学计算机学院/数字取证教育部工程研究中心,江苏南京210044 [2]南京气象科技创新研究院中国气象局交通气象重点开放实验室,江苏南京210041 [3]南京信息工程大学江苏省大气环境与装备技术协同创新中心,江苏南京210044 [4]苏州大学江苏省计算机信息处理技术重点实验室,江苏苏州215000 [5]上海农林职业技术学院,上海201699

出  处:《热带气象学报》2024年第6期882-895,共14页Journal of Tropical Meteorology

基  金:国家自然科学基金项目(42075007);苏州大学江苏省计算机信息处理技术重点实验室开放研究基金(KJS2275);中国气象局交通气象重点开放实验室开放研究基金(BJG202306);中国气象局流域强降水重点开放实验室开放研究基金(2023BHR-Y14);江苏省研究生科研与实践创新计划项目(SJCX24_0476、SJCX24_0477)共同资助。

摘  要:在全球气候变化背景下,越来越多的地区面临着热带气旋的威胁。因此,准确预测热带气旋的轨迹变化对于气象预警和灾害管理至关重要。然而,传统的基于深度学习的热带气旋预测方法在建模热带气旋的时空相关性方面存在局限。为此,提出了一种新的深度时空融合网络——DSTFN(Deep Spatio-Temporal Fusion Network)模型,以提高对热带气旋轨迹的预测精度和稳定性。构建了有效融合ConvNeXt(Convolutional Next)模型和门控循环单元的CaConvNeXt-GRU(Convolutional Block Attention Module Integrated with ConvNeXt and Gated Recurrent Unit)模型,以提取热带气旋三维时序数据中的复杂非线性时空特征。同时,引入了卷积块注意力模块,以自动聚焦不同等压面对热带气旋影响更大的特征。此外,设计了分阶段的训练策略,通过依次进行预训练、联合训练和整体训练实现了不同模块的有效融合。为了评估所设计的方法,在国际气候管理最佳路径档案和第五代大气再分析数据集上进行了大量实验。实验结果证明,在预测未来24 h的热带气旋轨迹时,相比于现有的基于深度学习的热带气旋轨迹预测模型,DSTFN模型的平均预测误差降低了约13.71 km。In the context of global climate change,more and more regions are facing the threat of tropical cyclones.Therefore,accurate prediction of changes in the tracks of tropical cyclones is essential for meteorological warning and disaster reduction.However,existing tropical cyclone prediction methods based on deep learning have limitations in modeling the spatio-temporal correlation of tropical cyclones.In the present study,we proposed a new deep spatio-temporal fusion network(DSTFN)model to improve the prediction accuracy and stability of tropical cyclone tracks.We developed the CaConvNeXt-GRU model,which effectively integrated the ConvNeXt model and the gated recurrent unit,to extract complex nonlinear spatio-temporal features in the 3D time series data of tropical cyclones.Meanwhile,the convolutional block attention module was introduced to automatically focus on the features that were affected more heavily by different isobaric surfaces on tropical cyclones.Moreover,we designed a staged training strategy to realize the effective integration of different modules through pre-training,joint training,and overall training.To evaluate the proposed model,we conducted extensive experiments on the International Best Track Archive for Climate Stewardship(IBTrACS)and the ERA5 dataset.Overall,in predicting tropical cyclone tracks for the next 24 hours,the DSTFN model reduced the average prediction error by about 13.71 km compared to existing tropical cyclone track prediction models based on deep learning.

关 键 词:热带气旋 路径预测 DSTFN模型 CaConvNeXt-GRU模型 时空序列预测 

分 类 号:P444[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象