基于网络凝聚子群分析的万里茶道沿线古村落集群式保护利用研究——以湖北省五峰县为例  

Research on the Clustered Preservation and Utilization of Ancient Villages along the Tea Road Based on Network Cohesive Subgroup Analysis:The Case of Wufeng County of Hubei Province

在线阅读下载全文

作  者:袁磊[1] 雷靛 刘晗[2] 刘小虎[1] YUAN Lei;LEI Dian;LIU Han;LIU Xiaohu

机构地区:[1]华中科技大学建筑与城市规划学院,武汉430074 [2]湖北城市建设职业技术学院,武汉430074

出  处:《新建筑》2025年第1期99-105,共7页New Architecture

摘  要:五峰县作为万里茶道上重要的节点,探索其古村落的集群式保护利用模式,有利于文化线路沿线古村落的保护与利用。文章运用MCR最小阻力模型和网络分析方法,采用“集群—核心村—核心廊道”的逻辑顺利展开研究,探索五峰县古村落的集群分布特征。结果显示:(1)五峰县万里茶道与当今的交通布局高度契合;(2)五峰县古村落大多集中分布在西部武陵山脉地区,基本沿古茶道呈现“大分散、小聚集”的线性分布特征;(3)基于五峰县集群网络计算得出4个凝聚子群、6个核心村、1条核心廊道。进而提出“以点带面、连线成片”的综合集群式保护利用策略。As an important node on the Tea Road,Wufeng County holds great potential for exploring models of cluster preservation and utilization of ancient villages,which is conducive to the cluster preservation and utilization of ancient villages along the cultural routes.In this paper,we use the MCR minimum resistance model and network analysis to explore the cluster preservation and utilization model of ancient villages in Wufeng County.The network analysis starts from the logic of“cluster-core village-core corridor”.The results show that:(1)The Wufeng County Tea Road is highly compatible with the present-day transportation layout;(2)Most ancient villages in Wufeng County are concentrated in the western Wuling Mountains,exhibiting a linear distribution characterized by“large dispersion and small aggregation”along the Tea Road;(3)Network analysis of the ancient villages in Wufeng County identifies four cohesive subgroups,six core villages,and one core corridor.Based on these results,we propose an integrated strategy for cluster preservation and utilization:stimulating regional development through key villages and linking these key villages via core corridors.

关 键 词:文化线路 万里茶道 传统村落 集中连片 网络分析 

分 类 号:TU982.29[建筑科学—城市规划与设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象