列线图预测非瓣膜性心房颤动所致急性心源性栓塞性卒中患者短期转归  

A nomogram predicts short-term outcome in patients with acute cardioembolic stroke due to nonvalvular atrial fibrillation

在线阅读下载全文

作  者:胡杰 王龙[1,2] 陈心怡 何讯[3] 吴君仓 Hu Jie;Wang Long;Chen Xinyi;He Xun;Wu Juncang(Department of Neurology,Hefei Hospital Affiliated to Anhui Medical University(Hefei Second People's Hospital),Hefei 230011,China;The Fifth Clinical Medical School,Anhui Medical University,Hefei 230022,China;Department of Neurology,Hefei Second People's Hospital Affiliated to Bengbu Medical University,Hefei 230011,China)

机构地区:[1]安徽医科大学附属合肥医院(合肥市第二人民医院)神经内科,合肥230011 [2]安徽医科大学第五临床医学院,合肥230032 [3]蚌埠医学院附属合肥市第二人民医院神经内科,合肥230011

出  处:《国际脑血管病杂志》2024年第10期728-734,共7页International Journal of Cerebrovascular Diseases

基  金:2022年度合肥市关键共性技术研发项目(GJ2022SM07);安徽省重点研究与开发计划项目(2022e07020029)。

摘  要:目的构建和验证预测非瓣膜性心房颤动(non-valvular atrial fibrillation,NVAF)所致急性心源性栓塞性卒中(cardioembolic embolism,CES)患者短期转归的列线图模型。方法回顾性纳入2023年1月至2024年8月期间在合肥市第二人民医院神经内科住院治疗的NVAF所致CES患者。在出院或发病后第14天时采用改良Rankin量表进行转归评价,≤2分定义为转归良好,>2分定义为转归不良。收集患者人口统计学资料、入院时美国国立卫生研究院卒中量表(National Institutes of Health Stroke Scale,NIHSS)评分及入院24 h内实验室检查,并计算中性粒细胞/淋巴细胞比值(neutrophil/lymphocyte ratio,NLR)及应激性高血糖比值(stress hyperglycemia ratio,SHR)。采用多变量logistic回归分析确定转归不良的独立危险因素,据此构建列线图预测模型并采用内部数据验证模型的预测效能。结果共纳入196例NVAF所致CES患者,女性109例(55.61%),中位年龄80岁(四分位数间距:73~84岁)。转归良好98例(50.00%),转归不良98例(50.00%),其中11例(5.61%)死亡。多变量logistic回归分析显示,较高的基线NIHSS评分[优势比(odds ratio,OR)1.088,95%置信区间(confidence interval,CI)1.023~1.157;P=0.007]、NLR(OR 1.279,95%CI 1.111~1.472;P<0.001)及女性性别(OR 2.288,95%CI 1.017~5.149;P=0.045)是短期转归不良的独立危险因素。纳入上述变量构建列线图预测模型,内部验证显示C统计量为0.820(95%CI 0.761~0.879),区分度良好。校准曲线中实际曲线与偏差校准曲线均趋近于理想曲线。决策曲线分析显示,该模型预测NVAF所致CES的风险阈值在0.10~0.30和0.33~0.89之间可临床获益。结论基线NIHSS评分、NLR及性别是NVAF所致CES患者短期转归不良的独立危险因素,较高的基线NIHSS评分和NLR以及女性性别提示患者短期转归不良,基于上述因素构建的列线图对短期转归不良表现出良好的预测效能。Objective To develop and validate a nomogram model for predicting short-term outcome in patients with acute cardioembolic stroke(CES)due to nonvalvular atrial fibrillation(NVAF).Methods Patients CES due to NVAF who were hospitalized in the Department of Neurology of Hefei Second People's Hospital from January 2023 to August 2024 were retrospectively included.The modified Rankin Scale was used to evaluate outcome at the 14 th day after discharge or onset.A score≤2 was defined as good outcome,and a score>2 was defined as poor outcome.The demographic data,National Institutes of Health Stroke Scale(NIHSS)scores at admission,and laboratory tests within 24 hours of admission were collected,and the neutrophil/lymphocyte ratio(NLR)and stress hyperglycemia ratio(SHR)were calculated.Multivariate logistic regression analysis was used to identify the independent risk factors for poor outcome,the nomogram prediction model was developed based on these risk factors,and the internal data was used to validate the predictive performance of the model.Results A total of 196 patients with CES due to NVAF were enrolled,including 109 females(55.61%),median aged 80 years(interquartile range:73-84 years).Ninety patients(50.00%)had good outcome,98(50.00%)had poor outcome,and 11(5.61%)died.Multivariate logistic regression analysis showed that higher baseline NIHSS scores(odds ratio[OR]1.088,95%confidence interval[CI]1.023-1.157;P=0.007),NLR(OR 1.279,95%CI 1.111-1.472;P<0.001),and female gender(OR 2.288,95%CI 1.017-5.149;P=0.045)were the independent risk factors for poor short-term outcome.The above variables were included to develop a nomogram prediction model.The internal validation showed that the C-statistic was 0.820(95%CI 0.761-0.879),indicating good discriminability.In the calibration curve,both the actual curve and the deviation calibration curve tended to approach the ideal curve.Decision curve analysis showed that the model predicted a risk threshold for CES due to NVAF between 0.10-0.30 and 0.33-0.89,which could provide clinica

关 键 词:栓塞性卒中 心房颤动 治疗结果 危险因素 生物标志物 列线图表 试验预期值 

分 类 号:R54[医药卫生—心血管疾病]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象