Anomaly detection in commercial aircraft landing at SSK II airport using clustering method  

在线阅读下载全文

作  者:Rossi Passarella Taswiyah Marsyah Noor Osvari Arsalan Mohd Shahriman Adenan 

机构地区:[1]Faculty of Computer Science,Universitas Sriwijaya,Indralaya,Indonesia [2]Smart Manufacturing Research Institute(SMRI),Universiti Teknologi MARA(UiTM),Shah Alam,Selangor,Malaysia

出  处:《Aerospace Traffic and Safety》2024年第2期141-154,共14页空天交通与安全(英文)

摘  要:This study focuses on the critical importance of compliant landing procedures for commercial aircraft to mitigate the risk of accidents,incidents,and financial losses.The research aims to raise awareness of these procedures and reduce their associated risks.This study uses K-means,the Gaussian Mixture Model(GMM),and Balanced Iterative Reducing and Clustering using Hierarchies(BIRCH)to find the best algorithm for finding unusual landing procedures based on vertical speed and elevation angle.It also uses clustering techniques to look at the data that was collected.The evaluation using the silhouette score,Davies-Bouldin(DB)index,and the Calinski-Harabasz(CH)index reveals that the GMM is the most stable method for forming clusters.Analysis of the anomalies revealed that the vertical speed rule identified 100%of the data as anomalies,whereas elevation-based anomalies accounted for only 0.8%of the total data.Limitations of the study include a limited number of features and a brief two-month data collection period.Future research should incorporate additional features,extend the data collection period,and explore more algorithms to enhance the accuracy and robustness of the analysis.

关 键 词:Aircraft anomaly Air traffic data Clustering methods Landing phase Machine learning 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象