检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:霍大柱 张婷[2] 李中杰 刘珏[3] 方立群 兰亚佳[5] 叶楚楚[6] 范子亮 王丽萍[8] 杨维中 王辰[1] Huo Dazhu;Zhang Ting;Li Zhongjie;Liu Jue;Fang Liqun;Lan Yajia;Ye Chuchu;Fan Ziliang;Wang Liping;Yang Weizhong;Wang Chen(School of Health Policy and Management,Chinese Academy of Medical Sciences&Peking Union Medical College,Beijing 100730,China;School of Population Medicine and Public Health,Chinese Academy of Medical Sciences&Peking Union Medical College,Beijing 100730,China;Department of Epidemiology and Biostatistics,School of Public Health,Peking University,Beijing 100191,China;Institute of Microbiology and Epidemiology,Academy of Military Medical Sciences,Beijing 100071,China;West China School of Public Health,Sichuan University,Chengdu 610041,Sichuan,China;Department of Acute Infectious Disease Control and Prevention,Shanghai Pudong New Area Center for Disease Control and Prevention,Shanghai 200136,China;Department of Infectious Disease Control and Prevention,Weifang City Center for Disease Control and Prevention,Weifang 261061,Shandong,China;Division of Infectious Disease,National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases,Chinese Center for Disease Control and Prevention,Beijing 102206,China)
机构地区:[1]中国医学科学院北京协和医学院卫生健康管理政策学院,北京100730 [2]中国医学科学院北京协和医学院群医学及公共卫生学院,北京100730 [3]北京大学公共卫生学院流行病与卫生统计学系,北京100191 [4]军事医学研究院微生物流行病研究所,北京100071 [5]四川大学华西公共卫生学院,四川成都610041 [6]上海市浦东新区疾病预防控制中心急性传染病防治科,上海200136 [7]潍坊市疾病预防控制中心传染病防制科,山东潍坊261061 [8]中国疾病预防控制中心传染病管理处,传染病溯源预警与智能决策全国重点实验室,北京102206
出 处:《疾病监测》2025年第1期16-22,共7页Disease Surveillance
基 金:国家重点研发计划(No.2023YFC2308701);中国医学科学院医学与健康科技创新工程(No.2021-I2M-1-044,No.2023-I2M-3-011);北京市自然科学基金(No.L242053);山东省医药卫生科技项目(No.202312051481)。
摘 要:本研究系统探讨总结了传染病监测预警体系智慧化建设的主要特点、关键功能、模式变革、价值意义及实施策略。研究表明,智慧化建设以体系整体性优化、数据驱动、新一代信息技术深度融合以及将城市作为建设基本单元为主要特点,应具备多源数据智能采集、多模态数据治理、多点触发智能预警、疫情趋势预测、智能辅助决策及可视化平台展示等六大关键功能,推动监测预警模式实现了从单一渠道到多源整合、从被动监测到主动感知、从“苗头”识别到风险预测以及从经验驱动到数据赋能的全面变革,并提出通过嵌入智慧城市治理框架、推动跨部门数据标准化治理、培养多学科交叉人才及强化数据安全与伦理保障等实施策略,为构建智慧高效、韧性可持续的传染病监测预警体系提供了理论指导。This study systematically summarizes the key characteristics,core functionalities,paradigm shifts,significance,and implementation strategies of smart infectious disease surveillance and early warning systems.The research identifies four key characteristics of smart construction:systemic optimization,data-driven approaches,deep integration of next-generation information technologies,and city-based implementation as the fundamental unit.The system is designed to perform six critical functions:intelligent multi-source data collection,multimodal data governance,multi-trigger early warning,epidemic trend forecasting,intelligent decision support,and visualization platform display.These features drive comprehensive transformations,including shifts from single to multi-source data,passive to active surveillance,early signal detection to risk-based assessment,and experience-driven to precision-based approaches.The study further proposes implementation strategies such as embedding the system into smart city governance frameworks,promoting cross-departmental data standardization,cultivating interdisciplinary talent,and strengthening data security and ethical safeguards.These insights provide theoretical guidance for developing smart,efficient,resilient,and sustainable infectious disease surveillance and early warning systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.116