横风下高速列车头型的多目标优化设计  

Multi-Objective Optimization Design of High-Speed Train Head Shape under Crosswind

在线阅读下载全文

作  者:季玲 李瑜 乔巍 JI Ling;LI Yu;QIAO Wei(CRRC Dalian Institute Co.,Ltd.,Dalian 116023,China)

机构地区:[1]中车大连机车研究所有限公司,辽宁大连116023

出  处:《大连交通大学学报》2025年第1期57-64,共8页Journal of Dalian Jiaotong University

摘  要:为提高横风下高速列车的气动特性和运行安全性,对列车头型进行多目标自动优化设计。以横风下列车的气动阻力、气动升力和气动横向力为优化目标,提取了6组优化设计变量。运用最优拉丁超立方采样法,并利用网格驱动变形技术快速得到计算样本。通过构造设计变量建立关于优化目标的径向基函数神经网络近似模型,采用遗传算法NSGA-Ⅱ进行多目标优化设计,获得Pareto前沿解集。与初始模型相比,优化后高速列车的气动阻力降低2.12%,气动升力降低7.29%,气动横向力降低3.61%。结果表明,多目标优化设计可显著改善高速列车在横风条件下的气动性能,同时提升其运行的安全性。A multi-objective automatic optimization design of high-speed train head shape was proposed to improve the aerodynamic performance and the safety of train operation under crosswind.Six groups of design variables were extracted to optimize the aerodynamic resistance,aerodynamic lift,and aerodynamic transverse force of trains under crosswind.The Optimal Latin hypercube design was adopted to sample,and the grid driven deformation technique was adopted to get the sample quickly.By constructing the radial basis function neural network approximation model of design variables about optimization objectives,Pareto frontier solution set was obtained by using genetic algorithm NSGA-Ⅱ for multi-objective optimization design.Compared with the initial model,the aerodynamic drag of the optimized train is reduced by 2.12%,the lift force is reduced by 7.29%,and the transverse force is reduced by 3.61%.The results show that the multi-objective optimization design can improve the aerodynamic performance and safety of high-speed trains under crosswind.

关 键 词:横风效应 高速列车空气动力学 神经网络近似模型 多目标优化 

分 类 号:U270.2[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象