A real-time flood forecasting hybrid machine learning hydrological model for Krong H'nang hydropower reservoir  

在线阅读下载全文

作  者:Phuoc Sinh Nguyen Truong Huy(Felix)Nguyen The Hung Nguyen 

机构地区:[1]Faculty of Water Resources Engineering,University of Science and Technology—The University of Da Nang,Da Nang,Vietnam [2]Song Ba JSC,573 Nui Thanh,Hai Chau,Da Nang,Vietnam [3]AtkinsRéalis,Montreal,Quebec,Canada

出  处:《River》2024年第1期107-117,共11页江河(英文)

基  金:Vingroup JSC;Master,PhD Scholarship Program of Vingroup Innovation Foundation,Grant/Award Number:VINIF.2021.ThS.97。

摘  要:Flood forecasting is critical for mitigating flood damage and ensuring a safe operation of hydroelectric power plants and reservoirs.This paper presents a new hybrid hydrological model based on the combination of the Hydrologic Engineering Center-Hydrologic Modeling System(HEC-HMS)hydrological model and an Encoder-Decoder-Long Short-Term Memory network to enhance the accuracy of real-time flood forecasting.The proposed hybrid model has been applied to the Krong H'nang hydropower reservoir.The observed data from 33 floods monitored between 2016 and 2021 are used to calibrate,validate,and test the hybrid model.Results show that the HEC-HMS-artificial neural network hybrid model significantly improves the forecast quality,especially for results at a longer forecasting time.In detail,the Kling-Gupta efficiency(KGE)index,for example,increased from ΔKGE=16%at time t+1h to ΔKGE=69%at time t+6 h.Similar results were obtained for other indicators including peak error and volume error.The computer program developed for this study is being used in practice at the Krong H'nang hydropower to aid in reservoir planning,flood control,and water resource efficiency.

关 键 词:HEC-HMS hydrological hybrid model Krong H'nang machine learning real-time flood forecasting 

分 类 号:TV1[水利工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象