Understanding non-motorists’views on automated vehicle safety through Bayesian network analysis and latent dirichlet allocation  

在线阅读下载全文

作  者:Subasish Das Abbas Sheykhfard Jinli Liu Md Nasim Khan 

机构地区:[1]Texas State University,601 University Drive,San Marcos,TX 78666,USA [2]Department of Civil Engineering,Babol Noshirvani University of Technology,Shariati Ave.,Babol,Mazandaran,Iran

出  处:《International Journal of Transportation Science and Technology》2024年第2期289-304,共16页交通科学与技术(英文)

摘  要:Automated vehicles(AVs)hold great promise for creating a safer,more efficient,more equitable,and more sustainable transportation system.However,the rapid adoption of AVs requires a thorough understanding in their coexistence with the human environment in the current roadway network,particularly with respect to interactions between AVs and non-motorists.Bike Pittsburgh(BikePGH)conducted a 2019 survey to examine nonmotorists’perceptions of AV safety.Using Bayesian network(BN)analysis,the study identified key factors such as safety perception,AV technology knowledge,and real-world interaction experiences that influence non-motorists’overall perception of AV safety using BikePGH survey data.The study also explored several counterfactual scenarios to gain insights into non-motorists’viewpoints on AV safety.Notably,the study found that the differences in the ways of AVs and human-driven vehicles interacted with non-motorists at intersections played a crucial role in shaping survey participants’opinions.By taking into account the key insights identified in this study,policymakers can develop evidence-based strategies to achieve sustainable urban mobility goals while ensuring the safety and wellbeing of all road users,particularly non-motorists.

关 键 词:Non-motorists Automated vehicle Safety BikePGH survey Bayesian network(BN)analysis 

分 类 号:TN9[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象