检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Quan Yuan Haocheng Lin Chengcheng Yu Chao Yang
机构地区:[1]Urban Mobility Institute,Tongji University,Shanghai 201804,China
出 处:《International Journal of Transportation Science and Technology》2024年第3期181-197,共17页交通科学与技术(英文)
基 金:supported by the Shanghai Sailing Program of China(ID:20YF1451700);the Science and Technology Commission of Shanghai Municipality of China(Nos.23692119000&21692112203);the Fundamental Research Funds for the Central Universities of China(No.2023-4-YB-01).
摘 要:Due to the increasing demand for goods movement,externalities from freight mobility have attracted much concern among local citizens and policymakers.Freight truck-related crash is one of these externalities and impacts urban freight transportation most drastically.Previous studies have mainly focused on correlation analyses of influencing factors based on crash density/count data,but have paid little attention to the inherent uncertainties of freight truck-related crashes(FTCs)from a spatial perspective.While establishing an interpretable analysis model for freight truck-related accidents that consid-ers uncertainties is of great significance for promoting the robust development of urban freight transportation systems.Hence,this study proposes the concept of FTC hazard(FTCH),and employs the Bayesian neural network(BNN)model based on stochastic varia-tional inference to model uncertainty.Considering the difficulty in interpreting deep learning-based models,this study introduces the local interpretable modelagnostic expla-nation(LIME)model into the analysis framework to explain the results of the neural net-work model.This study then verifies the feasibility of the proposed analysis framework using data from California from 2011 to 2020.Results show that FTCHs can be effectively modeled by predicting confidence intervals for effects of built environment factors,in par-ticular demographics,land use,and road network structure.Results based on LIME values indicate the spatial heterogeneity in influence mechanisms on FTCHs between areas within the metropolitan regions and alongside the freeways.These findings may help transport planners and logistic managers develop more effective measures to avoid potential nega-tive effects brought by FTCHs in local communities.
关 键 词:Freight truck-related traffic crash hazard(FTCH) Built environment Bayesian deep learning Stochastic variation inference Uncertainty Law of geography
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.72