检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏立勇 周颖 李熠 邱敏 丁一 孙腾 李一鸣[3] WEI Liyong;ZHOU Ying;LI Yi;QIU Min;DING Yi;SUN Teng;LI Yiming(State Grid(Tianjin)Comprehensive Energy Services Co.,Ltd.,Binhai New Area,Tianjin 300456,China;China Electric Power Research Institute Co.,Ltd.,Haidian District,Beijing 100192,China;North China Electric Power University,Changping District,Beijing 102206,China;Electric Power Research Institute,State Grid Tianjin Electric Power Company,Xiqing District,Tianjin 300384,China)
机构地区:[1]国网(天津)综合能源服务有限公司,天津市滨海新区300456 [2]中国电力科学研究院有限公司,北京市海淀区100192 [3]华北电力大学,北京市昌平区102206 [4]国网天津市电力公司电力科学研究院,天津市西青区300384
出 处:《电力信息与通信技术》2025年第3期9-16,共8页Electric Power Information and Communication Technology
基 金:国网天津市电力公司科技项目资助“支撑代理购电新业务的用户分群电力电量精准预测关键技术研究与应用”(5400-202312226A-1-1-ZN)。
摘 要:随着电网公司代理购电业务稳步推进,代理购电业务体系逐步完善,精确的代理购电用户用电量预测为保障电力安全稳定供应奠定了基础。因此,文章构建自适应权重组合模型,将不同校核方法的校核结果进行权重分配,从而提升校核结果准确性。首先,构建预测业务偏差校核流程框架,确定代理购电预测业务校核流程。然后分别选取分位数映射法、增量变化法以及支持向量回归(support vector regression,SVR)对预测结果进行校核,得到同一纬度下的不同方法校核结果。最后,建立遗传算法-优劣解距离法(genetic algorithm-technique for order preference by similarity to ideal solution,GA-TOPSIS)模型针对校核结果进行准确性与稳定性双目标优化,选取不同校核方法的最优权重组合。测试结果表明在校核方法权重组合校正后,相较于初始预测值和单一校核方法校核后的结果,预测精度和准确度得到明显提升。With the steady advancement of the agent power purchase business of the grid company,the agent power purchase business system has been gradually improved,and the accurate prediction of power consumption of agent power purchase users lays the foundation for guaranteeing the safe and stable power supply.Therefore,this paper constructs an adaptive weight combination model to assign weights to the calibration results of different calibration methods,so as to improve the accuracy of the calibration results.First of all,the prediction business deviation calibration process framework is constructed to determine the agent power purchase prediction business calibration process.Then,the quartile mapping method,incremental change method and support vector regression(SVR)are selected to calibrate the prediction results,and the calibration results of different methods at the same latitude are obtained.Finally,a genetic algorithm-technique for order preference by similarity to ideal solution(GA-TOPSIS)model is established to optimize the accuracy and stability of the calibration results,and the optimal weight combinations of the different calibration methods are selected.The optimal weight combinations of different checking methods are selected.The test results show that the prediction accuracy and precision are significantly improved after the weight combination of the calibration methods,compared with the initial prediction value and the result after the single calibration method.
关 键 词:校核流程 自适应权重组合 分位数映射法 增量变化法 GA-TOPSIS模型 支持向量回归 代理购电
分 类 号:TM715[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49