机构地区:[1]Graduate School of Engineering,Nagoya University,Furo-cho,Chikusa-ku,Nagoya 464-8603,Japan [2]State Key Laboratory of Crystal Materials,Institute of Crystal Materials,Shandong University,Jinan 250100,Shandong,China [3]Multidisciplinary Platform of Advanced Engineering,Department of Chemical Engineering,School of Engineering,Monash University Malaysia,Jalan Lagoon Selatan,47500 Bandar Sunway,Selangor,Malaysia [4]Department of Applied Chemistry,Graduate School of Engineering,University of Hyogo,Himeji,Hyogo 671-2280,Japan [5]Institute for Advanced Research,Nagoya University,Furo-cho,Chikusa-ku,Nagoya 464-8601,Japan
出 处:《Chinese Journal of Catalysis》2025年第1期1-50,共50页催化学报(英文)
基 金:supported by the Artificial Photosynthesis Project of the New Energy and Industrial Technology Development Organization(NEDO),the JST Fusion Oriented Research for disruptive Science and Technology Program(JPMJFR213D);JSPS KAKENHI(JP24K17774);Domen for his guidance during their PhD studies at the University of Tokyo,as well as for his ongoing support,encouragement,and mentorship.
摘 要:Professor Kazunari Domen at the Shinshu University and the University of Tokyo has pioneered materials and techniques for solar-driven water splitting using photocatalysts,a promising technology for contributing to the construction of a sustainable and carbon-neutral society.In this paper,we summarize his groundbreaking contributions to photocatalytic water splitting and,more broadly,photocatalytic research.We highlight various novel functional photocatalytic materials,including oxides,(oxy)nitrides,and oxysulfides,along with innovative techniques such as cocatalyst engineering and Z-scheme system construction developed by the Domen Group.His team has also pioneered readily accessible and cost-effective photo(electro)chemical device fabrication methods,such as the particle-transfer method and thin-film-transfer method.Furthermore,their research has made significant contributions to understanding the(photo)catalytic mechanisms using advanced characterization techniques.Together with his research team,Professor Domen has set many milestones in the field of photocatalytic overall water splitting,notably demonstrating the first scalable and stable 100 m^(2)solar H_(2)production system using only water and sunlight.His work has revealed the potential for practical solar H2 production from water and sunlight,and highlighted the application of fundamental principles,combined with chemical and materials science tools,to design effective photocatalytic systems.Through this review,we focus on his research and the foundational design principles that can inspire the development of efficient photocatalytic systems for water splitting and solar fuel production.By building on his contributions,we anticipate a significant impact on addressing major global energy challenges.在全球能源危机和环境污染加剧的背景下,寻找清洁、可再生的能源至关重要氢气作为一种高能量密度、零碳排放的燃料,被认为是未来能源结构中不可或缺的一部分.然而,传统制氢方法如天然气重整等仍依赖化石燃料,难以实现碳中和目标.光催化分解水制氢是一种利用太阳能驱动水分解为氢气和氧气的可持续能源技术,近年来在能源和环境领域备受关注.自20世纪70年代首次报道光催化分解水以来,世界各国科研和产业工作者投入了大量的热情和精力,推动了该技术的长足发展.日本学者堂免一成教授,是其中较为知名、影响力较大的杰出代表人物之一。考虑到太阳辐射主要集中在可见光部分,堂免一成开启了可见光激发光催化剂分解水的研究,为高效利用太阳光分解水奠定了坚实的基础;其次,他带领团队在近年成功完成了全球首例中试规模的太阳能大规模制氢(100平方米).该体系集成了光反应、气体收集和分离的完整太阳能分解水产氢系统,极大地推动了产业化的进程.本文系统总结了堂免一成在光催化分解水和光催化领域的系列突出性成果和贡献,主要包括在光催化剂材料的开发、制备和改性,技术手段上的设计、改进和优化,光催化过程机制的观测和研究,以及光催化产业化应用的实践等方面的工作和进展.堂免教授团队开发并发展了包括氧化物、氮(氧)化物和硫氧化物等多种光催化剂材料,应用和推广了包括助催化剂设计、乙型体系构建等在内的数个创新性技术手段,开创了包括颗粒转移法和薄膜转移法在内的便捷、经济的光(电)化学器件制备方法.此外,他们还通过系列先进的表征技术,加强了对(光)催化过程和机制的科学、深入理解.堂免教授的工作揭示了太阳能水解制氢的现实应用潜力,证明了通过化学和材料科学的基本原理设计高效光催化体系的�
关 键 词:PHOTOCATALYSIS Water splitting Solar H_(2)production Solar energy conversion Artificial photosynthesis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...