机构地区:[1]Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province,National Engineering Research Center for Marine Aquaculture,College of Marine Science and Technology,Zhejiang Ocean University,Zhoushan 316022,Zhejiang,China [2]School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China [3]Hubei Key Laboratory Low Dimens Optoelect Mat&Devices,Hubei University of Arts and Science,Xiangyang 441053,Hubei,China [4]Institute of Microstructure and Property of Advanced Materials,Beijing University of Technology,Beijing 100124,China [5]Institute of Biomass Engineering,Key Laboratory of Energy Plants Resource and Utilization,Ministry of Agriculture and Rural Affairs,South China Agricultural University,Guangzhou 510642,Guangdong,China
出 处:《Chinese Journal of Catalysis》2025年第1期259-271,共13页催化学报(英文)
基 金:国家自然科学基金(U1809214);浙江省自然科学基金(LY20E080014,LTGN23E080001);舟山市科技计划项目(2022C41011).
摘 要:Inefficient photo-carrier separation and sluggish photoreaction dynamics appreciably undermine the photocatalytic decontamination efficacy of photocatalysts.Herein,an S-scheme Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)heterojunction with interfacial Mo-S chemical bond is designed as an efficient photocatalyst.In this integrated photosystem,Bi2MoO6 and Mn_(0.5)Cd_(0.5)S function as oxidation and reduction centers of Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)microspheres,respectively.Importantly,the unique charge transfer mechanism in the chemically bonded S-scheme heterojunction with Mo-S bond as atom-scale charge transport highway effectively inhibits the photocorrosion of Mn_(0.5)Cd_(0.5)S and the recombination of photo-generated electron-hole pairs,endowing Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)photocatalyst with excellent photocatalytic decontamination performance and stability.Besides,integration of Mn_(0.5)Cd_(0.5)S nanocrystals into Bi2MoO6 improves hydrophilicity,conducive to the photoreactions.Strikingly,compared with Mn_(0.5)Cd_(0.5)S and Bi2MoO6,the Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)unveils much augmented photoactivity in tetracycline eradication,among which Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)-2 possesses the highest activity with the rate constant up to 0.0323 min-1,prominently outperforming other counterparts.This research offers a chemical bonding engineering combining with S-scheme heterojunction strategy for constructing extraordinary photocatalysts for environmental purification.水体新兴有机污染物污染具有结构复杂、毒性高、降解难的特点,现有的水体处理技术无法有效将其去除,导致在环境中的残留问题日益严重,成为人类生存面临的巨大危机。光催化技术是一种高效、经济、环境友好的水污染治理方法,该技术能够有效去除水体新兴有机污染物,因而受到科研工作者的广泛关注,但传统光催化材料的光利用率低、光生载流子复合严重和降解效率低,严重制约了其工业化应用.在众多催化剂中,S型异质结具有高氧化还原能力和快速光生载流子分离能力,实现了强还原性电子和强氧化性空穴高效利用,非常适合用于光催化净化水体,本文采用溶剂热法制备了Mo-S键键合的Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)S型异质结,其中Mn_(0.5)Cd_(0.5)S纳米粒子通过Mo-S键锚定在Bi_(2)MoO_(6)片上.由于Mn_(0.5)Cd_(0.5)S和Bi_(2)MoO_(6)之间的化学键键合界面和费米能级差异,形成了一个强的内部电场,推动光生载流子遵循S型电荷转移机制.重要的是,界面间的Mo-S键作为原子级的电荷传输通道,极大地抑制了Mn_(0.5)Cd_(0.5)S发生光腐蚀并有效抑制光生载流子的复合,从而确保了催化剂展示出较好的光催化活性和稳定性.此外,接触角实验结果证明,Mn_(0.5)Cd_(0.5)S的引入有效提升了Bi_(2)MoO_(6)的亲水性能,从而促进光催化反应.瞬态光电流响应、电化学阻抗曲线、分子荧光光谱和紫外-可见光谱等光电化学性质结果表明,Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)对阳光吸收的大幅增强、促进光生载流子的分离和实现了整个催化体系具有强的光氧化还原能力.该催化剂能有效产生大量的·OH和·O_(2)自由基,明显强于Mn_(0.5)Cd_(0.5)S和Bi_(2)MoO_(6).因此,在最佳反应条件下,优化后的Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6)异质结材料表现出最佳的四环素(TC)的降解速率常数为0.0323min^(-1),分别是Mno.5Cdo.sS和Bi_(2)MoO_(6)的2.8和3.1倍.与文献报道
关 键 词:Mn_(0.5)Cd_(0.5)S/Bi_(2)MoO_(6) Interfacialchemicalbond S-scheme heterojunction Emerging organic contaminants Internalelectricfield Photocatalysis
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...