机构地区:[1]Key Laboratory of the Ministry of Education for Advanced Catalysis Materials,College of Chemistry and Materials Science,Zhejiang Normal University,Jinhua 321004,Zhejiang,China [2]College of Geography and Environmental Sciences,Zhejiang Normal University,Jinhua 321004,Zhejiang,China [3]School of Biological and Chemical Engineering,Panzhihua University,Panzhihua 617000,Sichuan,China
出 处:《Chinese Journal of Catalysis》2025年第1期311-325,共15页催化学报(英文)
基 金:国家自然科学基金(21603191);浙江省自然科学基金(LQ16B010001,LY20B030003);浙江省尖兵”“领雁”研发公关计划(2022C03069,2023C03148);浙江省公益技术应用研究(分析测试计划(2017C37024);金华市科技计划(20204185);国家级大学生创新创业训练计划(202310345024)。
摘 要:Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocatalysts,while concurrently preventing side reactions and photocorrosion on the semiconductor surface.Herein,Ni-Co bimetallic hydroxides with varying Ni/Co molar ratios(Ni_(x)Co_(1-x)(OH)_(2),x=1,0.75,0.5,0.25,and 0)were grown in situ on a model 2D/2D S-scheme heterojunction composed of Cu_(2)O nanosheets and Fe_(2)O_(3)nanoplates to form a series of Cu_(2)O/Fe_(2)O_(3)@Ni_(x)Co_(1-x)(OH)_(2)(CF@NiCo)photocatalysts.The combined experimental and theoretical investigation demonstrates that incorporating an appropriate amount of Co into Ni(OH)_(2)not only modulates the energy band structure of Ni_(x)Co_(1-x)(OH)_(2),balances the electron-and hole-trapping abilities of the bifunctional cocatalyst and maximizes the charge separation efficiency of the heterojunction,but also regulates the d-band center of Ni_(x)Co_(1-x)(OH)_(2),reinforcing the adsorption and activation of CO_(2)and H_(2)O on the cocatalyst surface and lowering the rate-limiting barriers in the CO_(2)-to-CO and H_(2)O-to-O_(2)conversion.Benefiting from the Ni-Co synergy,the redox reactions proceed stoichiometrically.The optimized CF@Ni_(0.75)Co_(0.25)achieves CO and O_(2)yields of 552.7 and 313.0μmol gcat^(-1)h^(-1),respectively,11.3/9.9,1.6/1.7,and 4.5/5.9-fold higher than those of CF,CF@Ni,and CF@Co.This study offers valuable insights into the design of bifunctional noble-metal-free cocatalysts for high-performance artificial photosynthesis.利用太阳能将CO_(2)和H_(2)O转化为高附加值化学品或燃料,为解决温室效应和能源危机提供了一种潜在的解决方案.S型异质结光催化剂因其更宽的光吸收范围、更高的光生电荷分离效率和更强的氧化还原能力有望在该领域发挥重要作用.但是,由于S型异质结表面缺乏高活性的氧化还原位点,其光催化转化CO_(2)的效率仍然较低.在异质结的电子富集半导体和空穴富集半导体表面分别引入CO_(2)还原和H_(2)O氧化助催化剂,是解决上述问题的有效方法.目前所采用的策略主要包括利用半导体表面电子/空穴富集程度的差异来选择性地光沉积助催化剂,以及构建中空结构的异质结以实现双助催化剂在内外表面的空间分离前者主要适用于贵金属助催化剂,而后者需要复杂的模板法,均不利于催化剂的大规模制备.在异质结表面包裹层状过渡金属氢氧化物为实现空间分离的非贵金属CO_(2)还原和H_(2)O氧化助催化剂提供了一种简单而有效的方法.双功能过渡金属氢氧化物不仅可以分别在异质结的电子聚集端和空穴聚集端作为还原CO_(2)和氧化H_(2)O的助催化剂,还能防止包裹的半导体参与副反应,并保护其免受光腐蚀。然而,单一金属位点限制了氢氧化物助催化剂对光催化性能的提升.通过引入第二种金属位点以产生协同效应,有望进一步提高其助催化效率.本文首先制备了由Cu_(2)O和Fe_(2)O_(3)纳米片组成的二维S型CuzO/Fe_(2)O_(3)(CF)异质结,然后在其表面原位生长了具有不同Ni:Co摩尔比的层状镍钴双金属氢氧化物(Ni_(x)Co_(1-x)(OH)_(2),x=1,0.75,0.5,0.25和0),合成了一系列Cu_(2)O/Fe_(2)O_(3)@Ni_(x)Co_(1-x)(OH)_(2)(CF@NiCo)催化剂.原位光照X射线光电子能谱、开尔文探针力显微镜以及电子顺磁共振波谱测试结果表明,当CF@NiCo受到光激发时,Fe_(2)O_(3)的电子与Cu_(2)O的空穴发生复合.同时,Cu_(2)O的电子和Fe_(2)O,的空穴分�
关 键 词:Ni-Co synergy Bifunctional cocatalyst CO_(2)reduction H20oxidation 2D/2D heterojunction S-scheme photosynthetic system
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...