机构地区:[1]Tianjin Key Laboratory of Indoor Air Environmental Quality Control,School of Environmental Science and Technology and State Key Laboratory of Engines,Tianjin University,Tianjin 300350,China [2]China Merchants Marine and Offshore Research Institute CO.,LTD.,Shenzhen 518000,Guangdong,China [3]China Automotive Strategy and Policy Research Center,China Automotive Technology and Research Center Co.,Ltd,Tianjin 300300,China [4]Tianjin Key Laboratory of Environmental Remediation&Pollution Control,MOE Key Laboratory of Pollution Processes and Environmental Criteria,College of Environmental Science and Engineering,Nankai University,Tianjin 300350,China [5]Tianjin TEDA Co.,Ltd.,Tianjin 300350,China [6]School of Civil Engineering,Tianjin University,Tianjin 300072,China [7]New Catalytic Materials Engineering Research Center for Air Pollutant Control,Hebei province New Resin Material Technology Innovation Center,Langfang City Beichen Entrepreneurship Resin Materials Incorporated Co.,Ltd.,Langfang 065000,Hebei,China
出 处:《Chinese Journal of Catalysis》2025年第1期376-385,共10页催化学报(英文)
基 金:国家重点研发计划项目(2022YFB3504100,2022YFB3504102);河北省重大科技成果转化基金支持项目(2021004012A,22281401Z);国家自然科学基金(22276133,22076136).
摘 要:Understanding the influence of HCl on the NH_(3)-selective catalytic reduction reaction mechanism is crucial for designing highly efficient denitrification catalysts.The formation of chlorate species on the surface of the synthesized SbCeO_(x)catalyst,induced by HCl,significantly enhances low-temperature activity,as evidenced by a 30%increase in NO conversion at 155℃.Furthermore,it improves N_(2)selectivity at high temperatures,with a notable 17%increase observed at 405℃.Both experimental results and density functional theory calculations confirm that chlorate species form at Ce sites.This formation facilitates the creation of oxygen vacancies,boosting the oxygen exchange capacity.It also increases NH_(3)adsorption at the Ce sites,promotes the formation of Sb-OH,and reduces competitive OH adsorption on these sites.Notably,compared with the reaction mechanism without HCl,the presence of chlorate species enhances NH_(3)adsorption and activation,which is vital for subsequent catalytic reactions.经济的快速发展和城市化进程的加快导致生活垃圾急剧增加.为应对该挑战,垃圾焚烧技术因其显著的减量效果而被广泛应用.然而,垃圾焚烧技术会产生氮氧化物等二次污染物,这些污染物需要进行有效处理.氨选择性催化还原(NH_(3)-SCR)技术是目前应用最为广泛的脱硝技术,但垃圾焚烧产生的酸性气体HCI会导致催化剂失活.因此,深入研究HCI对NH_(3)-SCR反应机理的影响,对于设计高效脱硝催化剂具有重要意义.本文制备出SbCe催化剂,并对其进行性能研究,旨在开发应用于垃圾焚烧发电厂低温脱硝活性好、抗酸性气体和水中毒能力优异的催化剂.本文设计制备了一种双金属复合氧化物SbCeO_(x)催化剂,并研究NH_(3)-SCR活性,以评估HCI对反应机理的影响.结合表征技术和密度泛函理论(DFT)计算,探讨了催化剂的理化性质与其催化性能之间的关系,深入研究了HCI对SbCeO_(x)催化剂NH_(3)-SCR反应机理的影响.结果表明,在HCI毒化过程中,HCI与吸附氧和表面晶格氧发生反应,导致HCI在催化剂表面诱导生成的氯酸盐物种,显著提高了催化剂的低温活性,在155C时NO转化率提高了30%.同时,高温下N_(2)选择性也得到明显改善,在405C时NO转化率提高了17%.研究结果和DFT结果均证实,氯酸盐物种在Ce位点形成,该过程中晶格氧被消耗,促进了氧空位的产生,提高了催化剂表面氧的交换能力.此外,氯酸盐物种还增强了NH在Ce位点的吸附,促进了Sb-OH的形成,并减少了OH在这些位点的竞争性吸附.吸附的NH_(3)随后与残余的晶格氧反应,在Ce位点上形成酰胺(-NH_(2))中间体,同时在Sb位点上产生额外的氧空位和羟基酰胺中间体进一步与NO反应形成关键的[NH_(2)NO]中间体,这些中间体最终分解生成N_(2).值得关注的是,与未进行HCI气体毒化相比,氯酸盐物种的存在增强了NH_(3)的吸附和活化,这对于后续催化反应至关重要.实验结果表明,HCI
关 键 词:NH_(3)-selective catalytic reduction Chlorate species SbCeO_(x)catalyst Density functional theory HCI
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...