机构地区:[1]CAS Key Laboratory of Science and Technology on Applied Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,Liaoning,China [2]University of Chinese Academy of Sciences,Beijing 100049,China [3]State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC,China University of Petroleum,Beijing 102249,China [4]School of Chemistry and Chemical Engineering,Yangzhou University,Yangzhou 225009,Jiangsu,China [5]State Key Laboratory of Catalysis,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,457 Zhongshan Road,Dalian 116023,Liaoning,China [6]DICP-Surrey Joint Centre for Future Materials,Department of Chemical and Process Engineering,University of Surrey,Guildford,Surrey,GU27XH,UK [7]Inner Mongolia Key Laboratory of Rare Earth Catalysis,College of Chemistry and Chemical Engineering Inner Mongolia University,Hohhot 010021,Inner Mongolia,China
出 处:《Chinese Journal of Catalysis》2025年第1期394-403,共10页催化学报(英文)
基 金:国家重点研发计划(2022YFB4300700);国家自然科学基金(21802134,22479082);中科院青年基础研究项目(YSBR-022);内蒙古大学基金(10000-23112101/081);内蒙古青年科技英才基金(NJYT24019)。
摘 要:Revealing the structure evolution of interfacial active species during a dynamic catalytic process is a challenging but pivotal issue for the rational design of high-performance catalysts.Here,we successfully prepare sub-nanometric Pt clusters(~0.8 nm)encapsulated within the defects of CeO_(2)nanorods via an in-situ defect engineering methodology.The as-prepared Pt@d-CeO_(2)catalyst significantly boosts the activity and stability in the water-gas shift(WGS)reaction compared to other analogs.Based on controlled experiments and complementary(in-situ)spectroscopic studies,a reversible encapsulation induced by active site transformation between the Pt^(2+)-terminal hydroxyl and Pt^(δ+)-O vacancy species at the interface is revealed,which enables to evoke the enhanced performance.Our findings not only offer practical guidance for the design of high-efficiency catalysts but also bring a new understanding of the exceptional performance of WGS in a holistic view,which shows a great application potential in materials and catalysis.水气变换反应(WGS)是重要的制氢和CO脱除过程,广泛应用于能源相关领域。前期研究表明,模型催化剂上金属-载体界面在WGS反应决速步-水活化解离过程中起着重要作用;金属键合的羟基物种直接参与了水活化过程,可有效提高WGS反应效率.然而,如何精准制备富含金属-氧化物界面活性位的高性能WGS反应催化剂,以及原位追踪反应过程中活性位、关键活性物种的动态演化仍是一项重要挑战.本文利用“缺陷工程”策略通过两步水热法成功将Pt团簇(~0.8nm)包覆在富含缺陷位CeO_(2)纳米棒中,获得了Pt@d-CeO_(2)催化剂.将Pt@d-CeO_(2)用于WGS反应中,在极高空速(GHSV=150000 h^(-1))下,300℃时CO转化率为86%,350℃时达到平衡转化率(95%).转化频率值在350℃时高达12.27 s^(-1),比已报道的相近反应条件下同类催化剂高一个数量级.催化剂具有良好的稳定性,经100h反应,CO转化率未发现明显下降.像差校正透射电镜结果表明,Pt团簇以0.6-1nm尺度分散在氧化上,且被氧化铈薄层包覆.能量散射谱、电子能量损失谱、X射线光电子能谱(XPS)和原位透射模式傅里叶变换红外光谱(TM-FT-IR)结果均证实了Pt-CeO_(2)的界面包覆特性。程序升温表面脱附结果初步表明,Pt@d-CeO_(2)催化剂上WGS反应总体历程是CO先在Pt-CeO_(2)界面处反应生成CO_(2),然后HO解离生成H_(2)CO-程序升温还原、原位TM-FT-IR和原位近环境压力XPS结果表明,Pt-CeO_(2)包覆界面为本征活性位,界面处的端-OH为关键活性物种.利用一系列原位表征手段实时追踪界面活性位和端-OH在反应过程中的动态演化,进而提出Pt@d-CeO_(2)催化剂上WGS反应的详细反应历程:依据一系列原位表征结果提出Pt@d-CeO_(2)催化剂上WGS反应的详细反应历程:首先,CO与Pt-CeO_(2)包覆界面处的端-OH反应生成活性中间物种COOH,继而分解成CO_(2)和H_(2)CeO_(2)包覆的Pt团簇部分暴露并产生新的活性氧空位;然后,H
关 键 词:Interfacial dynamics HYDROXYLS Water-gas shiftreaction In-situspectroscopy
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...