基于机器学习的宜良红火蚁入侵风险评估  

Risk Assessment of Solenopsis invicta Invasion in Yiliang County Based on Machine Learning

在线阅读下载全文

作  者:费腾 叶江霞 王敬文 Fei Teng;Ye Jiangxia;Wang Jingwen(College of Forestry,Southwest Forestry University,Kunming Yunnan 650233,China;Baise Forestry Scientific Research Institute,Baise Guangxi 533000,China)

机构地区:[1]西南林业大学林学院,云南昆明650233 [2]百色市林业科学研究所,广西百色533000

出  处:《西南林业大学学报(自然科学)》2025年第2期183-191,共9页Journal of Southwest Forestry University:Natural Sciences

基  金:云南省科技厅农业联合项目(202301BD070001-245)资助。

摘  要:以滇中宜良县为研究区,基于一系列可能影响因子对红火蚁的入侵风险进行了评估,旨在探索其空间扩散机制和格局。研究根据实地调查,通过遥感反演和地理信息系统(GIS)分析,对气象、植被、水域、地形地貌、人为活动等各种环境变量进行空间量化与栅格制图,并基于MaxEnt、随机森林和Logistic三种机器学习方法构建了入侵风险模型,且分别进行精度评估及影响因子分析,最终以空间可视化地图表征红火蚁的入侵风险。结果表明:MaxEnt、随机森林和Logistic模型的AUC值分别为0.926、0.944和0.950,Logistic最优,模型的AUC值均大于0.9,表明了模型的可靠性;驱动因子分析显示,影响红火蚁入侵的因素复杂多样,最优Logistic模型的影响因子依次为土壤湿度、食量、海拔和坡向;红火蚁在滇中宜良的入侵风险格局表现出明显的空间异质性;红火蚁高风险区集中在水体周边、荒山荒地和新造林地,而难以侵入高海拔自然植被区;要特别重视区域苗木检疫工作和预防性消毒灭菌工作,加强森林经营管理,促进提高森林质量,构筑天然屏障。研究分析了红火蚁在滇中宜良的潜在入侵风险格局,为开展有效的防控提供了科学依据,同时也为其他入侵物种的风险评估提供了一定参考。Using Yiliang County of Central Yunnan,China as the study area,the invasion risk of the Solenopsis invicta was assessed based on a series of possible drivers,aiming to explore its spatial dispersal mechanisms and patterns.Firsly,various environmental variables such as meteorology,vegetation,watershed,topography and geomorphology,and anthropogenic activities were quantified and raster mapped based on field work by remote sensing inversion and geographic information system(GIS)analysis.Three maching learning of MaxEnt,random forest and Logistic prediction models were constructed,also the accuracy was assessed,and a factor analysis was conducted on driving factors,respectively,so as to visualize the risk patterns of S.invicta invasion.The results show that the AUC values of MaxEnt,random forest and Logistic models are 0.926,0.944 and 0.950 respectively,and the AUC values of the models are greater than 0.9,which indicates that the models are reliable;factor analys-is shows that the main driving factors of the model are multifaceted, and the dominant independent variables of all models are different. The driving factors of the optimal Logistic model are surface humidity, food, altitude and as-pect;the invasion risk model shows strong spatial heterogeneity;the high-risk areas for S. invicta in the study area are concentrated in the surrounding water bodies, barren hills and wastelands and newly forested land, which are less likely to invade the natrual vegetation areas at high altitude;special attention should be paid to the quarantine work and preventive disinfection and sterilisation of seedlings, and to strengthening the management of forest op-erations to promote the improvement of forest quality and the construction of natural barriers. The study comple-ments the invasion pattern and potential risk of S. invicta in central Yunnan, providing a scientific basis for effect-ive prevention and control, as well as a reference meaning for the risk assessment of other invasive species.

关 键 词:红火蚁 MaxEnt模型 随机森林模型 LOGISTIC模型 风险评估 

分 类 号:S763[农业科学—森林保护学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象