基于同源和EFD方法的太阳轮故障特征提取研究  

Fault Feature Extraction of Sun Gear Based Co-source and EFD Method

在线阅读下载全文

作  者:李泓锟 张砦[1] 李斌 李林钊 万嶒 LI Hongkun;ZHANG Zhai;LI Bin;LI Linzhao;WAN Ceng(School of Automation,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China)

机构地区:[1]南京航空航天大学自动化学院,南京211100

出  处:《计算机测量与控制》2025年第3期63-70,78,共9页Computer Measurement &Control

基  金:2023研究生科研与践创新计划项目(xcxjh20230328)。

摘  要:行星齿轮箱具有复杂传动结构,在太阳轮出现故障时,其故障信息往往被无关或干扰成分所掩盖,导致故障特征难以辨识;为提取故障状态下振动信号的共性特征,采用同源响应的振源分离策略,依据旋转机械内部激励信号具有的周期性及低秩特性,挖掘与故障高度相关的同源响应片段,获取含有丰富故障信息的片段,并提取最能代表故障特征的主要成分,以突出故障特征信息并减少无关信息干扰;在传统经验傅里叶分解基础上,设置频带分割阈值,避免频谱局部分割;通过故障特征比指标自适应筛选最佳分解分量,用包络谱图验证故障特征提取效果;最终通过太阳轮裂纹故障振动仿真信号及实际齿轮箱运行数据进行验证,实现了太阳轮裂纹故障特征的清晰提取,验证了方法的有效性。Planetary gearboxes have complex transmission mechanisms.With a sun gear failure,its fault information is usually interfered with or covered,making it difficult to identify th fault;To effectively extract common features from fault vibration signals,a co-source response strategy for vibration source separation is presented.Based on the periodic and low-rank characteristics of internal excitation signals in rotating machinery,this approach identifies homologous response segments highly related to sun gear faults,obtains segments with rich fault information,extracts main components that best represent the fault characteristics,and highlights fault information and reduces the interference of irrelevant information;Based on traditional empirical Fourier decomposition,a frequency band segmentation threshold is set to avoid local spectral segmentation.The optimal decomposition components are adaptively selected through a fault feature ratio index,and the envelope spectrum is used to verify the effectiveness of fault feature extraction;Finally,the method s effectiveness is validated using both the vibration signals of sun gear crack faults and actual gearbox operational data,clearly extracting the features of sun gear crack faults.

关 键 词:行星齿轮箱 太阳轮裂纹故障 经验傅里叶分解 潮汐周期 故障特征提取 

分 类 号:O206.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象