超疏水表面多尺寸液滴撞击冻结特性的模拟研究  

Simulation Investigation of Multi-size Droplet Impact and Freeze on Superhydrophobic Surfaces

在线阅读下载全文

作  者:张丹[1] 郑海坤[1,2] 陈孝松 张培成 盛伟 郝晓茹[1] ZHANG Dan;ZHENG Haikun;CHEN Xiaosong;ZHANG Peicheng;SHENG Wei;HAO Xiaoru(School of Mechanical and Power Engineering,Henan Polytechnic University,Henan Jiaozuo 454000,China;Hami Yu-Xin Energy Industry Institute Co.,Ltd,Xinjiang Hami 839000,China)

机构地区:[1]河南理工大学机械与动力工程学院,河南焦作454000 [2]哈密豫新能源产业研究院有限责任公司,新疆哈密839000

出  处:《表面技术》2025年第6期173-181,239,共10页Surface Technology

基  金:国家自然科学基金(52266001);河南省科技攻关项目(232102241014);河南省高等学校重点科研项目(22A470002);河南理工大学博士基金资助项目(B2021-37)。

摘  要:目的 研究不同直径过冷液滴撞击超疏水表面的动力学特性和传热特性。方法 以宏观结冰/结霜过程中过冷水滴的撞击结冰为背景,运用CLSVOF方法,结合凝固-融化模型,对直径为3 000、2 375、1 750、1125μm的水滴撞击结冰行为进行了模拟研究,从动力学和传热学角度定量分析了水滴撞击结冰过程,获得了水滴撞击结冰动态图。结果 不同直径的液滴撞击超疏水壁面所经历的动态过程类似,但随着液滴直径的增大,液滴撞击壁面不同阶段所需的时间、液滴最大铺展面积以及液滴与壁面的接触时间均会增加,依次递增了3.691、4.444和5.867 ms;液滴撞击壁面的传热量随着液滴的铺展过程逐渐增大,在达到最大传热量后随着液滴回缩而下降,最终趋近于0 W,且直径较大的液滴达到最大铺展时其传热量的波动较明显。液滴与壁面的传热速率在铺展阶段和回缩阶段都有所增加,随着液滴逐渐弹离而趋近于0 W/s,较大直径水滴会导致更高的传热量。结论 液滴直径对撞击过程的动力学和热力学特性具有显著的影响,研究结果可为超疏水表面多尺寸液滴的有效去除和防冰提供新参考。The work aims to study the dynamics and heat transfer characteristics of superhydrophobic surfaces of supercooled droplets with different diameters,and verify the accuracy of the simulations by comparing them with existing experiments and other simulations.Based on the background of the impact of supercooled water droplets in the macroscopic freezing/frosting process,CLSVOF method and solidification-melting model were used to adopt supercooled water droplets with diameters of 3 000, 2 375, 1 750 and 1 125 μm to impact the wall at 1.4 m/s under a temperature of −15 . There were four impact types. The impact of water droplets on icing behavior was simulated. For the superhydrophobic wall surface with a small hysteresis angle, the static contact angle model was used in this example, and the contact angle was 163°. The icing behavior of water droplets hitting was simulated and studied, and the icing dynamics of water droplets hitting were quantitatively analyzed from the perspectives of kinetics and heat transfer, and the dynamic diagram of water droplet impact icing was obtained. The maximum wetting area obtained by simulation was in good agreement with the experimental results, and the deviation was less than 13%. The above results illustrated the feasibility of the simulation to analyze the following icing process of supercooled water droplets. The dynamic process of droplets with different diameters hitting the superhydrophobic wall was similar, but with the increase of the droplet diameter, the time required for the droplets to hit the wall at different stages, the maximum spreading area of the droplets, and the contact time between the droplets and the wall increased by 3.691, 4.444 and 5.867 ms respectively. The simulation results were slightly faster than the experimental results because the static contact angle model used in the simulation ignored the effect of the hysteresis angle. The contact time of the 3 mm droplet was 16.784 ms, and the maximum spreading area was 4.07×10^(−5) mm^(2). The contact

关 键 词:过冷水滴 表面 相变 动力学特性 传热分析 数值模拟 

分 类 号:TB34[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象