机构地区:[1]中煤科工开采研究院有限公司,北京100013 [2]东北大学深部工程与智能技术研究院,辽宁沈阳110819
出 处:《岩石力学与工程学报》2025年第2期459-471,共13页Chinese Journal of Rock Mechanics and Engineering
基 金:中煤科工开采研究院有限公司科技创新基金项目(KCYJY–2023–QN–04);国家自然科学基金面上项目(62276058)~。
摘 要:水力压裂巷道卸压技术是巷道围岩控制的有效手段,以红柳林煤矿15217窄煤柱工作面为工程背景,构建16通道微震监测系统,基于水力压裂过程中和工作面回采时前后方顶板内的微震事件活动规律与矿压监测数据,评价水力压裂巷道卸压效果。结果表明:搭建的井下高精度传感器阵列可以有效捕捉到水力压裂产生的微震事件,且定位精度高;微震事件与压裂施工时间段基本吻合,非压裂期间,尤其是在压裂结束后5 h内,微震事件仍有增加,水力压裂对顶板岩层的破坏分为直接破坏和间接破坏2种形式;水力压裂扩散半径可达50 m左右,但显著影响半径约为30 m,压裂产生的微震事件集中分布在钻孔周围,微震事件密集区呈非对称形态;工作面回采过程中,在工作面煤壁前方、后方均存在应力集中区,工作面前方应力集中区距离煤壁30~35 m,工作面后方应力集中区距离煤壁40~45 m,此范围内微震事件分布最为集中;一次采动时煤柱内垂直应力变化可分为3个阶段,窄煤柱剖面内垂直应力分布呈“单峰”形态,二次采动时,窄煤柱靠近工作面回采测的垂直应力在超前工作面15~20 m时,达到其服务期内最大值,但仍显著低于未卸压工作面;与未卸压工作面相比,锚杆(索)受力、变化幅度及受采动影响时间均明显降低。Hydraulic fracturing in roadway pressure relief is an effective method for controlling the surrounding rock of roadways.Using the 15217 coal pillar working face at the Hongliulin Coal Mine as the engineering background,this study constructs a 16-channel microseismic monitoring system.By analyzing the activity patterns of microseismic events within the roof before and after hydraulic fracturing and during face mining,combined with mine pressure monitoring data,the effectiveness of hydraulic fracturing in roadway pressure relief was evaluated.The results indicate that the high-precision underground sensor array effectively captures microseismic events induced by hydraulic fracturing with high localization accuracy.The microseismic events align closely with the fracturing operation period,and during non-fracturing periods,especially within five hours after fracturing ends,microseismic events continue to increase. Hydraulic fracturing causes both direct and indirect damage to the roofstrata. The hydraulic fracturing diffusion radius can reach approximately 50 meters,with a significant impact radiusof around 30 meters. Microseismic events are concentrated around the borehole,and their dense distribution areapresents an asymmetrical shape. During the mining process,stress concentration zones are observed both in frontand behind the working face. The stress concentration zone in front of the working face is 30–35 meters from thecoal wall,while the one behind the working face is 40–45 meters from the coal wall,with the most concentrateddistribution of microseismic events within these ranges. The vertical stress changes within the coal pillar duringinitial mining can be divided into three stages,with the vertical stress distribution in the coal pillar profile showinga“single peak”shape. During secondary mining,the vertical stress near the working face reaches its maximumvalue about 15–20 meters ahead of the face but remains significantly lower than in unrelieved working faces.Compared to unrelieved working faces
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...