检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈丹[1] 邵必林[1] CHEN Dan;SHAO Bilin(School of Management,Xi'an University of Architecture and Technology,Xi'an 710055,China)
机构地区:[1]西安建筑科技大学管理学院,陕西西安710055
出 处:《河南科技学院学报(自然科学版)》2025年第2期91-100,共10页Journal of Henan Institute of Science and Technology(Natural Science Edition)
基 金:国家自然科学基金(62072363)。
摘 要:目的为克服传统时间序列预测方法在天然气负荷预测中存在的局限性,提出一种基于SVMD-GRU-Attention-SVR的天然气负荷组合预测模型.方法使用斯皮尔曼相关系数法对影响因素进行相关性分析,获取强相关特征.通过逐次变分模态分解(SVMD)将原始负荷序列分解为若干个子信号分量,并将注意力机制引入门控循环神经网络(GRU),对各子分量分别进行预测,将预测结果叠加融合得到初步预测结果和预测误差,之后利用支持向量回归(SVR)模型对预测误差进行校正,获取最终负荷预测值.结果对比不同模型的预测结果,该组合预测模型的均方误差、平均绝对误差、均方根误差和决定系数分别为0.0025、0.0386、0.0496和0.9813,具有更高的预测精度.结论所提组合模型能够有效提高天然气负荷预测精度,可为天然气负荷预测研究提供理论支持,为天然气公司平稳供气提供决策依据.Objective In order to overcome the limitations of traditional time series forecasting methods in natural gas load forecasting,a natural gas load combination prediction model based on SVMD-GRU-Attention-SVR is proposed.Methods The correlation analysis of the influencing factors is performed using the Spearman correlation coefficient method to obtain strong correlation features.The original load sequence is decomposed into several sub-signal components through successive variational modal decomposition(SVMD),and the attention mechanism is introduced into the gated recurrent neural network(GRU)to predict each sub-component separately,and the predictions are combined to generate an initial forecast and a forecast error,The SVR model is used to correct the prediction error and obtain the ultimate load prediction value.Results Compared with the prediction results of different models,the mean square error,mean absolute error,root mean square error and determination coefficient of the combined prediction model are 0.0025,0.0386,0.0496 and 0.9813,respectively,which has higher prediction accuracy.Conclusion The proposed combination model can effectively improve the accuracy of natural gas load forecasting,provide theoretical support for natural gas load forecasting research,and provide decision-making basis for natural gas companies to supply gas smoothly.
关 键 词:SVMD 门控循环神经网络 注意力机制 SVR 负荷预测
分 类 号:TU996.3[建筑科学—供热、供燃气、通风及空调工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.184.208