检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ling YANG Jie FU Zhaoming LI Shuqing MA Wanyi WEI Yang LIU
机构地区:[1]College of Electronic Engineering,Chengdu University of Information Technology,Chengdu,610225,China [2]China Meteorological Administration Key Laboratory of Atmospheric Sounding,Chengdu,610225,China [3]Foshan Tornado Research Center/Foshan Meteorological Office of Guangdong Province,Foshan,825315,China [4]CMA Meteorological Observation Centre,China Meteorological Administration(CMA),Beijing,100081,China [5]Rayshon Technology Co.,Ltd.,Beijing,100089,China
出 处:《Journal of Meteorological Research》2025年第1期41-58,共18页气象学报(英文版)
基 金:Supported by the Joint Fund Project of National Natural Science Foundation of China(U2142210).
摘 要:Dual-Doppler radar detection and wind-field retrieval techniques are crucial for capturing small-scale structures within convective systems.The spatiotemporal resolution of radar data is a key factor influencing the accuracy of wind-field observations.Recently,an advanced X-band phased-array weather radar system was deployed in Foshan,Guangdong Province,China,comprising a central collaborative control unit and multiple networked phased-array radar front-ends.These radar front-ends work together to scan a common area,achieving a maximum data time difference of 5 s and a volume scan interval of 30 s,thereby providing three-dimensional wind-field data with higher spatiotemporal resolution and greater accuracy than achieved using traditional methods.This study utilized the X-band phased-array weather radar system to analyze the development of a substantial hailstorm that occurred over Foshan on 26 March 2022.Analysis indicated that hail cloud activity intensified considerably after 1442 local time,with the maximum reflectivity factor exceeding 60 dBZ above the altitude of the-20℃ level,and reflectivity continued to increase over the subsequent 12 min.More precise information on the flow-field structure of the storm was obtained by examining the X-band radar data.The temporal and vertical variations in the maximum reflectivity factor,updraft velocity,vertical wind shear,and horizontal wind speed within a hailstorm cloud were scrutinized.The results show that the altitude,intensity,and range of the main updraft area increased as the storm core ascended.Concurrently,the vertical wind shear at mid-lower levels of the storm became more pronounced as the altitude of the strong radar echo center increased prior to the peak of the updraft.Therefore,a new hail warning index was developed by using the vertical wind shear,and the index can be used to issue warnings up to 12 min earlier than achievable using traditional methods detecting increases in hailstorm intensity.
关 键 词:HAIL X-band phased-array weather radar UPDRAFT vertical wind shear
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.124.77