检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Tianrui Ye Jin Meng Yitian Xiao Yaqiu Lu Aiwei Zheng Bang Liang
机构地区:[1]SINOPEC Petroleum Exploration and Production Research Institute,Beijing,100083,PR China [2]SINOPEC jianghan Oilfeld Company,Research Insttute of Exploration and Development,Wuhan,Hubei,430223,PR Chia
出 处:《Energy Geoscience》2025年第1期209-221,共13页能源地球科学(英文)
基 金:funded by the National Natural Science Foundation of China(42050104).
摘 要:This study introduces a comprehensive and automated framework that leverages data-driven method-ologies to address various challenges in shale gas development and production.Specifically,it harnesses the power of Automated Machine Learning(AutoML)to construct an ensemble model to predict the estimated ultimate recovery(EUR)of shale gas wells.To demystify the“black-box”nature of the ensemble model,KernelSHAP,a kernel-based approach to compute Shapley values,is utilized for elucidating the influential factors that affect shale gas production at both global and local scales.Furthermore,a bi-objective optimization algorithm named NSGA-Ⅱ is seamlessly incorporated to opti-mize hydraulic fracturing designs for production boost and cost control.This innovative framework addresses critical limitations often encountered in applying machine learning(ML)to shale gas pro-duction:the challenge of achieving sufficient model accuracy with limited samples,the multidisciplinary expertise required for developing robust ML models,and the need for interpretability in“black-box”models.Validation with field data from the Fuling shale gas field in the Sichuan Basin substantiates the framework's efficacy in enhancing the precision and applicability of data-driven techniques.The test accuracy of the ensemble ML model reached 83%compared to a maximum of 72%of single ML models.The contribution of each geological and engineering factor to the overall production was quantitatively evaluated.Fracturing design optimization raised EUR by 7%-34%under different production and cost tradeoff scenarios.The results empower domain experts to conduct more precise and objective data-driven analyses and optimizations for shale gas production with minimal expertise in data science.
关 键 词:Machine learning Model interpretation Bi-objective optimization Shale gas Key factor analysis Fracturing optimization
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222