Integrated AutoML-based framework for optimizing shale gas production: A case study of the Fuling shale gas field  

在线阅读下载全文

作  者:Tianrui Ye Jin Meng Yitian Xiao Yaqiu Lu Aiwei Zheng Bang Liang 

机构地区:[1]SINOPEC Petroleum Exploration and Production Research Institute,Beijing,100083,PR China [2]SINOPEC jianghan Oilfeld Company,Research Insttute of Exploration and Development,Wuhan,Hubei,430223,PR Chia

出  处:《Energy Geoscience》2025年第1期209-221,共13页能源地球科学(英文)

基  金:funded by the National Natural Science Foundation of China(42050104).

摘  要:This study introduces a comprehensive and automated framework that leverages data-driven method-ologies to address various challenges in shale gas development and production.Specifically,it harnesses the power of Automated Machine Learning(AutoML)to construct an ensemble model to predict the estimated ultimate recovery(EUR)of shale gas wells.To demystify the“black-box”nature of the ensemble model,KernelSHAP,a kernel-based approach to compute Shapley values,is utilized for elucidating the influential factors that affect shale gas production at both global and local scales.Furthermore,a bi-objective optimization algorithm named NSGA-Ⅱ is seamlessly incorporated to opti-mize hydraulic fracturing designs for production boost and cost control.This innovative framework addresses critical limitations often encountered in applying machine learning(ML)to shale gas pro-duction:the challenge of achieving sufficient model accuracy with limited samples,the multidisciplinary expertise required for developing robust ML models,and the need for interpretability in“black-box”models.Validation with field data from the Fuling shale gas field in the Sichuan Basin substantiates the framework's efficacy in enhancing the precision and applicability of data-driven techniques.The test accuracy of the ensemble ML model reached 83%compared to a maximum of 72%of single ML models.The contribution of each geological and engineering factor to the overall production was quantitatively evaluated.Fracturing design optimization raised EUR by 7%-34%under different production and cost tradeoff scenarios.The results empower domain experts to conduct more precise and objective data-driven analyses and optimizations for shale gas production with minimal expertise in data science.

关 键 词:Machine learning Model interpretation Bi-objective optimization Shale gas Key factor analysis Fracturing optimization 

分 类 号:F42[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象