Machine learning-assisted retrosynthesis planning:Current status and future prospects  

在线阅读下载全文

作  者:Yixin Wei Leyu Shan Tong Qiu Diannan Lu Zheng Liu 

机构地区:[1]Department of Chemical Engineering,Tsinghua University,Beijing 100084,China [2]Beijing Key Laboratory of Industrial Big Data System and Application,Beijing 100084,China

出  处:《Chinese Journal of Chemical Engineering》2025年第1期273-292,共20页中国化学工程学报(英文版)

基  金:supported by the National Key Research and Development Program of China(2022ZD0117501).

摘  要:Machine learning-assisted retrosynthesis planning aims to utilize machine learning(ML)algorithms to find synthetic pathways for target compounds.In recent years,with the development of artificial intelligence(AI),especially ML,researchers’interest in ML-assisted retrosynthesis planning has rapidly increased,bringing development and opportunities to the field.In this review,we aim to provide a comprehensive understanding of ML-assisted retrosynthesis planning.We first discuss the formal definition and the objective of retrosynthesis planning,and organize a modular framework which includes four modules:data preparation,data preprocessing,pathway generation and evaluation,and pathway verification.Then,we sequentially review the current status of the first three modules(except pathway verification)in the ML-assisted retrosynthesis planning framework,including ideas,methods,and latest progress.Following that,we specifically discuss large language models in retrosynthesis planning.Finally,we summarize the extant challenges that are faced by current ML-assisted retrosynthesis planning research and offer a perspective on future research directions and development.

关 键 词:Retrosynthesis planning Machine learning Artificial intelligence Synthetic pathway CHEMOINFORMATICS 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象