检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuyang Han Xiuxing Li Tianyuan Jia Qixin Wang Chaoqiong Fan Xia Wu
机构地区:[1]School of Computer Science&Technology Beijing Institute of Technology No.5 Zhongguancun South Street,Haidian District Beijing,P.R.China [2]School of Artificial Intelligence Beijing Normal University No.19,Xinjiekouwai St,Haidian District,Beijing,P.R.China
出 处:《Guidance, Navigation and Control》2024年第3期108-128,共21页制导、导航与控制(英文)
基 金:supported by the National Natural Science Foundation of China under Grant 62236001 and Grant 62325601
摘 要:Bayesian-based methods have emerged as an effective approach in continual learning(CL) to solve catastrophic forgetting. One prominent example is Variational Continual Learning(VCL), which demonstrates remarkable performance in task-incremental learning(task-IL).However, class-incremental learning(class-IL) is still challenging for VCL, and the reasons behind this limitation remain unclear. Relying on the sophisticated neural mechanisms, particularly the mechanism of memory consolidation during sleep, the human brain possesses inherent advantages for both task-IL and class-IL scenarios, which provides insight for a braininspired VCL. To identify the reasons for the inadequacy of VCL in class-IL, we first conduct a comprehensive theoretical analysis of VCL. On this basis, we propose a novel Bayesian framework named as Learning within Sleeping(Lw S) by leveraging the memory consolidation.By simulating the distribution integration and generalization observed during memory consolidation in sleep, Lw S achieves the idea of prior knowledge guiding posterior knowledge learning as in VCL. In addition, with emulating the process of memory reactivation of the brain,Lw S imposes a constraint on feature invariance to mitigate forgetting learned knowledge. Experimental results demonstrate that Lw S outperforms both Bayesian and non-Bayesian methods in task-IL and class-IL scenarios, which further indicates the effectiveness of incorporating brain mechanisms on designing novel approaches for CL.
关 键 词:Continual learning variational inference Bayesian inference brain-inspired algorithm
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49