检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙冬生 吴瑞琦 李楠 周锋[2] SUN Dongsheng;WU Ruiqi;LI Nan;ZHOU Feng(Admission Office,Yandu Open University,Yancheng Jiangsu 224000,China;School of Information Engineering,Yancheng Institute of Technology,Yancheng Jiangsu 224051,China)
机构地区:[1]盐都开放大学招生办公室,江苏盐城224000 [2]盐城工学院信息工程学院,江苏盐城224051
出 处:《盐城工学院学报(自然科学版)》2024年第4期48-57,共10页Journal of Yancheng Institute of Technology:Natural Science Edition
摘 要:热轧带钢是重要的生产材料之一,然而现有的基于深度学习的缺陷识别算法识别效率低、模型参数冗余,无法满足生产要求。本文对轻量级模型SqueezeNext的基础模块进行优化重构,通过加入不同分辨率的卷积通路提升模型特征提取能力。同时提出一种下采样空间通道注意力模块,将浅层信息施加注意力后传入模型深层,进一步提升识别精度。实验结果显示,最优模型在东北大学带钢表面缺陷数据集上的识别准确性达到98.96%,优于同类轻量级模型,且相较于同准确率的其他模型,拥有更少的参数量和浮点运算量。Hot rolled strip is one of the important production materials.However,the existing defect identification algorithm based on deep learning has low identification efficiency and redundant model parameters,which can not meet the production require-ments.In this paper,the basic module of the lightweight model SqueezeNext is optimized and reconstructed,and the feature ex-traction ability of the model is improved by adding convolution paths with different resolutions.At the same time,a down-sampling spatial channel attention module is proposed,which applies attention to shallow information and then transmits it to the deep layer of the model to further improve the recognition accuracy.The experimental results show that the identification accu-racy of the optimal model on the strip surface defect data set of Northeastern University reaches 98.96%,which is superior to simi-lar lightweight models,and has less parameters and floating-point operations than other models with the same accuracy.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31