机构地区:[1]鹰潭市人民医院监管科,江西鹰潭335000 [2]鹰潭市余江区第二人民医院血透室,江西鹰潭335200
出 处:《中国医学创新》2025年第9期160-165,共6页Medical Innovation of China
基 金:江西省卫生健康委科技计划项目(202211490)。
摘 要:目的:构建并验证缺血性脑卒中合并2型糖尿病患者尿路感染的预测模型,分析其影响因素。方法:回顾性选取2022年6月—2023年12月鹰潭市人民医院收治的缺血性脑卒中合并2型糖尿病患者84例为建模组,并根据是否发生尿路感染分为尿路感染组和未发生尿路感染组,收集其临床资料分析发生尿路感染的影响因素,并构建缺血性脑卒中合并2型糖尿病患者发生尿路感染的风险预测模型,采用受试者操作特征(ROC)曲线评估模型预测价值。另选取2024年1—6月鹰潭市人民医院收治的缺血性脑卒中合并2型糖尿病患者36例为验证组,收集其临床资料对模型进行外部验证。结果:建模组患者尿路感染25例(29.76%),未发生尿路感染59例(70.24%)。单因素及多因素分析结果显示,年龄(X_(1))[OR=7.987,95%CI(1.417,45.022)]、性别(X_(2))[OR=11.787,95%CI(1.930,71.999)]、体重指数(X_(3))[OR=1.478,95%CI(1.075,2.032)]、糖化血红蛋白(X_(4))[OR=11.397,95%CI(1.750,74.219)]、白蛋白(X_(5))[OR=5.034,95%CI(1.058,23.950)]、留置导尿管(X_(6))[OR=5.930,95%CI(1.094,32.142)]及住院天数(X_(7))[OR=13.475,95%CI(1.969,92.196)]均为患者尿路感染的独立影响因素(P<0.05)。根据多因素分析结果构建模型公式为Logit(P)=2.078X_(1)+2.467X_(2)+0.391X_(3)+2.433X_(4)+1.616X_(5)+1.780X_(6)+2.601X_(7)-17.939。行ROC曲线分析,结果显示,建模组的ROC的AUC为0.944[95%CI(0.891,0.997),P<0.001],敏感度为0.920,特异度为0.862。验证组的ROC的AUC为0.954[95%CI(0.890,0.998),P<0.001]。结论:本研究构建的缺血性脑卒中合并2型糖尿病患者尿路感染的预测模型效果极好,临床可据此识别高风险尿路感染患者,并给予针对性的干预措施以预防。Objective:To establish and verify the prediction model of urinary tract infection in patients with ischemic stroke complicated with type 2 diabetes mellitus,and analyze its influencing factors.Method:A total of 84 patients with ischemic stroke combined with type 2 diabetes mellitus admitted to Yingtan City People's Hospital from June 2022 to December 2023 were retrospectively selected as the modeling group,and they were divided into urinary tract infection group and non-urinary tract infection group according to whether urinary tract infection occurred.Clinical data were collected to analyze the influencing factors of urinary tract infection.The risk prediction model of urinary tract infection in patients with ischemic stroke complicated with type 2 diabetes mellitus was constructed,and the predictive value of the model was evaluated by receiver operating characteristic(ROC)curve.In addition,36 patients with ischemic stroke complicated with type 2 diabetes mellitus admitted to Yingtan City People's Hospital from January to June 2024 were selected as the validation group,and their clinical data were collected for external verification of the model.Result:In the modeling group,there were 25 cases(29.76%)with urinary tract infection and 59 cases(70.24%)without urinary tract infection.Univariate and multivariate analysis showed that age(X_(1))[OR=7.987,95%CI(1.417,45.022)],gender(X_(2))[OR=11.787,95%CI(1.930,71.999)],body mass index(X_(3))[OR=1.478,95%CI(1.075,2.032)],glycosylated hemoglobin(X_(4))[OR=11.397,95%CI(1.750,74.219)],albumin(X_(5))[OR=5.034,95%CI(1.058,23.950)],indwelling catheter(X_(6))[OR=5.930,95%CI(1.094,32.142)]and length of hospital stay(X_(7))[OR=13.475,95%CI(1.969,92.196)]were independent influencing factors for patients with urinary tract infection(P<0.05).According to the results of multivariate analysis,the model formula was established as Logit(P)=2.078X_(1)+2.467X_(2)+0.391X_(3)+2.433X_(4)+1.616X_(5)+1.780X_(6)+2.601X_(7)-17.939.ROC curve analysis showed that the AUC of ROC in the modeling gr
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...