锂离子电池不析锂充电边界辨析及优化充电方法  

Charging Boundary Analysis and Optimized Charging Method without Lithium Plating for Lithium-Ion Batteries

在线阅读下载全文

作  者:孙丙香[1,2] 马仕昌 陈昕[3] 张旭博 张维戈[1,2] Sun Bingxiang;Ma Shichang;Chen Xin;Zhang Xubo;Zhang Weige(National Active Distribution Network Technology Research Center(NANTEC)Beijing Jiaotong University,Beijing 100044 China;Key Lab of Vehicular Multi-Energy Drive Systems(VMEDS)Ministry of Education Beijing Jiaotong University,Beijing 100044 China;China Academy of Space Technology,Beijing 100094 China)

机构地区:[1]北京交通大学国家能源主动配电网技术研发中心,北京100044 [2]北京交通大学载运装备多源动力系统教育部重点实验室,北京100044 [3]中国空间技术研究院,北京100094

出  处:《电工技术学报》2025年第6期1960-1973,共14页Transactions of China Electrotechnical Society

基  金:国家自然科学基金资助项目(52177206)。

摘  要:开发不析锂的优化充电方法对于缓解电动汽车用户充电焦虑、里程焦虑具有重要意义。当前优化充电研究中涉及析锂边界的不同应用形式,但是它们之间的一致性和差异性尚不明晰,同时缺少易于工程应用的优化充电方法。围绕以上问题,该文进行了析锂边界不同应用形式的辨析和优化充电研究。首先,搭建包含析锂副反应的高精度电化学模型,在25℃和10℃下验证了仿真精度。其次,利用二分法和比例积分微分控制算法获取了不同应用形式的析锂边界,包括析锂电流边界、析锂电压边界和析锂在线边界,辨析了三者间的本质一致性和差异性。最后,基于析锂电压边界和遗传算法,优化得到兼顾充电时间和充电容量的五阶段恒流充电方法,进一步地,提出了四种五阶段恒流恒压充电方法,并分析了恒压阶段对于充电效果的影响。与传统恒流充电对比,所提出的优化充电方法可以大幅缩短充电时间,并最大化充电容量。该文阐明了析锂边界不同应用形式间的异同,提出的充电方法易于实现工程应用,同时为优化充电提供了新的研究思路。The development of optimized charging methods without lithium plating is significant in alleviating electric vehicle users'charging and mileage anxiety.Current optimal charging research involves different forms of lithium plating boundaries. Still, their consistency and differences need to be clarified. In practice, a more theoretical basis is needed for choosing the application form of lithium plating boundaries. In addition, current lithium plating-free charging methods tend to switch the current according to the SOC, which makes the control process more complicated. Optimized charging methods should be explored for engineering applications. Firstly, this paper defines different forms of lithium plating boundary. Specifically, the specific application of the lithium plating boundary is summarized into three forms: (1) The maximum charging current-SOC boundary, called “lithium plating current boundary”;(2) The threshold voltage-charging current boundary, “lithium plating voltage boundary”;(3) The maximum charging current-time curve obtained by combining PID and other control algorithms, “lithium plating online boundary”. A pseudo two dimensional (P2D) electro- chemical model with lithium plating side reactions is developed to obtain the lithium plating boundary. The model’s parameters are partly obtained from the manufacturer and partly identified by the adaptive particle swarm optimization algorithm. The accuracy of the model is verified at 25℃ and 10℃. Secondly, three forms of lithium plating boundaries are obtained using dichotomous and proportional integral differential control algorithms. The lithium plating current boundary, lithium plating voltage boundary, and lithium plating online boundary are consistent. Through variable conversion, lithium plating current boundary and lithium plating voltage boundary can be derived from each other, only differing in application forms. The lithium plating online boundary can be transformed into the lithium plating current or voltage boundary. However

关 键 词:锂离子电池 电化学模型 析锂边界 遗传算法 优化充电 

分 类 号:TM911[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象