检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡嘉豪 林溢 方双喜 刘硕 臧昆鹏 陈圆圆[1] 郭娜 李珊 郭朋 兰文港 HU Jiahao;LIN Yi;FANG Shuangxi;LIU Shuo;ZANG Kunpeng;CHEN Yuanyuan;GUO Na;LI Shan;GUO Peng;LAN Wengang(Zhejiang Carbon Neutral Innovation Institute&Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring,Zhejiang University of Technology,Hangzhou 310014;School of Environment,Zhejiang University of Technology,Hangzhou 310014;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University Information&Scientific Technology,Nanjing 210044)
机构地区:[1]浙江工业大学浙江碳中和创新研究院,浙江省碳减排与碳监测技术国际科技合作基地,杭州310014 [2]浙江工业大学环境学院,杭州310014 [3]南京信息工程大学,气象灾害预报预警与评估协调创新中心,南京210044
出 处:《环境科学学报》2025年第3期42-56,共15页Acta Scientiae Circumstantiae
基 金:国家重点研发计划(No.2023YFC3705200);国家自然科学基金(No.42275113)。
摘 要:大气一氧化碳(CO)浓度增加不仅影响空气质量同时也严重影响气候变化.本研究基于2014—2023年城市站点和郊区站点大气CO浓度监测数据,研究杭州市城-郊大气CO浓度时空变化差异.结果表明:城市站和郊区站大气CO浓度在空间上均呈东高西低的特征,且浓度呈逐年下降趋势,且城区站下降幅度高于郊区站.相较于气象因素,两类站点受人为活动影响更为显著.在不同时间尺度上,城市站浓度均高于郊区站.受早晚高峰影响,两类站点日变化均呈双峰特征,但城市站振幅高于郊区站.受秋冬北方供暖以及夏季海洋季风影响,城市站和郊区站月变化均呈现"U型"特征.后向轨迹聚类和权重潜在源贡献函数(WPSCF)分析表明,来自海洋方向的气团对杭州市大气CO浓度有稀释作用,周边城市的人为排放对其大气CO浓度有明显影响.The increase in atmospheric carbon monoxide(CO)concentration not only affects air quality but also significantly impacts climate change.Based on CO concentration monitoring data from urban and suburban stations in Hangzhou from 2014 to 2023,this study examines the spatiotemporal variation of atmospheric CO concentrations between urban and suburban areas.The results indicate that CO concentrations at both urban and suburban stations exhibit a spatial pattern of being higher in the east and lower in the west,with a decreasing trend over the years.Moreover,the decline in CO concentrations was more pronounced at urban stations compared to suburban stations.Compared to meteorological factors,human activities had a more significant impact on CO concentrations at both types of stations.Urban station concentrations were consistently higher on different time scales than suburban stations.Influenced by morning and evening traffic peaks,both types of stations showed a bimodal diurnal variation pattern,with urban stations having higher amplitudes than suburban stations.Due to northern heating in autumn and winter and dilution by summer ocean monsoons,both urban and suburban stations displayed a"U-shaped"monthly variation pattern.Backward trajectory clustering and Weighted Potential Source Contribution Function(WPSCF)analysis revealed that air masses from the ocean had a diluting effect on atmospheric CO concentration in Hangzhou,while human emissions from surrounding cities had a significant impact on its atmospheric CO concentration.
关 键 词:一氧化碳 浓度变化 气象影响 后向轨迹 潜在源分析
分 类 号:X51[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.70.192