一种虚拟弧段式的停车场路网拓扑模型  

Road network topology model of parking lot in the form of virtual arc

在线阅读下载全文

作  者:刘亚其 于先文[1] LIU Yaqi;YU Xianwen(School of Transportation,Southeast University,Nanjing 211102,China)

机构地区:[1]东南大学交通学院,江苏南京211102

出  处:《中山大学学报(自然科学版)(中英文)》2025年第2期86-93,共8页Acta Scientiarum Naturalium Universitatis Sunyatseni

基  金:国家重点研发计划(2023YFB3907103)。

摘  要:本文提出了一种虚拟弧段式的停车场路网拓扑模型。首先,确定车位所在路段以及车位中心在该路段的投影点。然后,以投影点两侧子路段的长度与该路段总长度的比值确认分割位置。对于每个车位,使用分割位置截取路段的一部分作为虚拟弧段,表达车位与路网之间的拓扑关系。最后,在寻路时将路径规划任务分解为起点到车位所在路段两端点以及两端点到车位两个阶段,选择综合代价更低的一条作为最终路径。实验表明:相比于打断道路式模型,本文模型在用于寻路计算时节省了70%以上的计算时间和20%的存储空间,减少了90%以上的拓扑节点和边。因此,该模型能有效减少寻路时间、降低拓扑路网维护工作量和数据存储传输压力。This paper proposes a road network topology model of parking lot in the form of virtual arc.First,determine the road where the parking space is located and the projection point of the parking center on the road.Then,the segmentation position is confirmed by the ratio of the length of the subroad on both sides of the projection point to the total length of the road.For each parking space,a part of the road is intercepted by the segmentation position as a virtual arc to express the topological relationship between the parking space and the road network.Finally,the path planning is divided into two stages:from the starting point to the endpoints of the road where the parking space is located,and from the endpoints to the parking space.The one with the lower comprehensive cost will be chosen as the final path.The experimental results show that the computational time is saved by more than 70%,the number of topological nodes and edges is reduced by more than 90%,the storage space is saved by 20%.It is proved that the model is of great significance to reduce the time of route finding,the workload of maintaining topological network and the pressure of data storage and transmission.

关 键 词:拓扑路网 虚拟弧段 停车场 停车诱导 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象