基于AFSA-GPR的超声测厚温度补偿研究  

Research on Temperature Compensation for Ultrasonic Thickness Measurement Based on AFSA-GPR

在线阅读下载全文

作  者:杨冬旭 李祥[1] 贾九红[1] YANG Dongxu;LI Xiang;JIA Jiuhong(Key Laboratory of Pressure Systems and Safety,Ministry of Education,East China University of Science and Technology)

机构地区:[1]华东理工大学承压系统与安全教育部重点实验室

出  处:《仪表技术与传感器》2025年第2期91-95,共5页Instrument Technique and Sensor

基  金:国家自然科学基金(52175138)。

摘  要:使用超声信号对高温承压设备进行壁厚在线监测时,温度的变化会影响壁厚测量结果。针对这一问题,提出一种基于人工鱼群算法优化高斯过程回归的AFSA-GPR温度补偿模型。采用人工鱼群算法对高斯过程超参数进行寻优以提高模型预测精度。在室温(25℃)至500℃环境下进行超声测厚试验研究,结果表明,该温度补偿模型能显著提升高温环境下壁厚测量精度,其MAE为0.014 8 mm, RMSE为0.022 3 mm。When using ultrasonic signals for online monitoring of wall thickness of high-temperature pressure equipment,changes in temperature can affect wall thickness measurements.To solves this problem,an AFSA-GPR temperature compensation method based on Gaussian process regression optimized by artificial fish-swam algorithm was proposed.The artificial fish-swam al-gorithm was used to optimize Gaussian process hyperparameters to improve model prediction accuracy.The ultrasonic thickness measurement experiment was conducted from room temperature(25℃)to 500℃,and the result shows that the temperature compensation model significantly improves the accuracy of wall thickness measurement in high-temperature environments.The MAE is 0.0148 mm and the RMSE is 0.0223 mm.

关 键 词:高温承压设备 超声测厚 温度补偿 高斯过程回归 人工鱼群算法 

分 类 号:TB551[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象