检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨冬旭 李祥[1] 贾九红[1] YANG Dongxu;LI Xiang;JIA Jiuhong(Key Laboratory of Pressure Systems and Safety,Ministry of Education,East China University of Science and Technology)
出 处:《仪表技术与传感器》2025年第2期91-95,共5页Instrument Technique and Sensor
基 金:国家自然科学基金(52175138)。
摘 要:使用超声信号对高温承压设备进行壁厚在线监测时,温度的变化会影响壁厚测量结果。针对这一问题,提出一种基于人工鱼群算法优化高斯过程回归的AFSA-GPR温度补偿模型。采用人工鱼群算法对高斯过程超参数进行寻优以提高模型预测精度。在室温(25℃)至500℃环境下进行超声测厚试验研究,结果表明,该温度补偿模型能显著提升高温环境下壁厚测量精度,其MAE为0.014 8 mm, RMSE为0.022 3 mm。When using ultrasonic signals for online monitoring of wall thickness of high-temperature pressure equipment,changes in temperature can affect wall thickness measurements.To solves this problem,an AFSA-GPR temperature compensation method based on Gaussian process regression optimized by artificial fish-swam algorithm was proposed.The artificial fish-swam al-gorithm was used to optimize Gaussian process hyperparameters to improve model prediction accuracy.The ultrasonic thickness measurement experiment was conducted from room temperature(25℃)to 500℃,and the result shows that the temperature compensation model significantly improves the accuracy of wall thickness measurement in high-temperature environments.The MAE is 0.0148 mm and the RMSE is 0.0223 mm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7