检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜京义[1] 陈镇 张嘉伟 李晨[2] 高瑞[1] 王鹏 DU Jing-yi;CHEN Zhen;ZHANG Jia-wei;LI Chen;GAO Rui;WANG Peng(College of Electrical and Control Engineering,Xi an University of Science and Technology,Xi an 710054,China;College of Communication and Information Engineering,Xi an University of Science and Technology,Xi an 710054,China;College of Mechanical Engineering,Xi an University of Science and Technology,Xi an 710054,China)
机构地区:[1]西安科技大学电气与控制工程学院,西安710054 [2]西安科技大学通信与信息工程学院,西安710054 [3]西安科技大学机械工程学院,西安710054
出 处:《科学技术与工程》2025年第8期3296-3303,共8页Science Technology and Engineering
基 金:陕西省自然科学基础研究计划(2023-JC-YB-362)。
摘 要:为快速识别煤矿井下泄漏点的位置及泄漏孔径,利用供水管道泄漏时产生的压力及流量信号,提出一种泄漏孔径识别与定位模型。首先利用模态能量熵和遗传算法结合包络熵对变分模态分解(variational mode decomposition,VMD)进行参数优化,再使用VMD对压力信号进行降噪处理;采用卷积神经网络(convolutional neural networks,CNN)提取压力及流量信号的深层特征序列,长短时记忆网络(long short-term memory,LSTM)提取深层特征序列的时序特征,进行泄漏孔径识别与定位。实验结果表明:经过参数优化的变分模态分解,相较卡尔曼滤波、均值滤波、低通滤波在均方根误差(root mean square error,RMSE)、平均绝对误差(mean absolute error,MAE)、信噪比(signal to noise ratio,SNR)、归一化互相关系数(normalized cross correlation,NCC)上均有提高,表明其能够有效降低噪声成分,保留有效信号;CNN-LSTM相较LSTM,在泄漏点定位中,MAE降低了65.97%,平均绝对百分比误差(mean absolute percentage error,MAPE)降低了61.22%,RMSE降低了59.11%。在泄漏孔径识别中,MAE降低了12.04%,MAPE降低了22.45%,RMSE降低了3.29%,证明CNN-LSTM可以充分利用管道压力及流量信号的空间及时间特征进行泄漏位置及孔径的识别,其检测效果相较LSTM更加准确和稳定。In order to quickly identify the location of the leakage point and the leak aperture in the coal mine,a model was proposed for identifying and locating the leak aperture by using the pressure and flow signals generated when the water supply pipeline leaked.Modal energy entropy and genetic algorithm combined with envelope entropy were used to optimize the parameters of variational mode decomposition(VMD),and then VMD was used to denoise the pressure signal.Convolutional neural network(CNN)was used to extract the deep feature sequence of pressure and flow signal,and the long short-term memory network(LSTM)was used to extract the time sequence of deep feature sequence to identify and locate the leak aperture.The experimental results show that compared with Kalman filter,mean value filter and low-pass filter,the variational modal decomposition with optimized parameters has higher root-mean-square error(RMSE),mean absolute error(MAE),signal-to-noise ratio(SNR)and normalized cross correlation(NCC),which indicates that it can effectively reduce noise components and retain effective signals.Compared with LSTM,the MAE,mean absolute percentage error(MAPE)and RMSE of CNN-LSTM in leak location decrease by 65.97%,61.22%and 59.11%.In the identification of leak aperture,MAE decreases by 12.04%,MAPE decreases by 22.45%,and RMSE decreases by 3.29%,which proves that CNN-LSTM can make full use of the spatial and temporal characteristics of pipeline pressure and flow signals to identify the leak location and aperture,and its detection effect is more accurate and stable than LSTM.
关 键 词:变分模态分解(VMD) 卷积神经网络(CNN) 长短时记忆网络(LSTM) 模态能量熵 遗传算法(GA) 包络熵
分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.39.144