检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任咏红[1] 冯千千 邵鑫宇 REN Yonghong;FENG Qianqian;SHAO Xinyu(School of Mathematics,Liaoning Normal University,Dalian 116081,China)
出 处:《辽宁师范大学学报(自然科学版)》2025年第1期68-73,共6页Journal of Liaoning Normal University:Natural Science Edition
基 金:辽宁省属本科高校基本科研业务费专项基金资助项目(LS2024L001)。
摘 要:考虑具有概率约束的随机优化问题,该类问题在风险评估及优化等许多领域中具有重要的应用价值.基于随机变量的概率分布的p-有效点和水平集的概念,将概率约束优化问题(PCOP)转化为锥约束优化问题(CCOP).进而,给出了相应的最优性条件,并构建了近似的非线性优化问题(NLP).构造了基于修正的Frish函数的非线性Lagrange函数,设计了求解问题(PCOP)的对偶算法.在满足一系列特定条件的前提下,论证了该对偶算法产生的点列的聚点满足一阶必要条件.Consider stochastic optimization problems with probabilistic constraints,which have significant application value in many fields such as risk assessment and optimization,etc.Based on the concepts of p-efficient points and level sets of the probability distribution of random variables,the probabilistic constrained optimization problem(PCOP)is transformed into a cone-constrained optimization problem(CCOP).Furthermore,corresponding optimality conditions are provided,and an approximation nonlinear optimization problem(NLP)is constructed.A nonlinear Lagrange function based on the modified Frish function is constructed,and a dual algorithm for solving the problem(PCOP)is designed.Under a series of specific conditions,it is demonstrated that the accumulation points of the sequence of points generated by the dual algorithm satisfy the first-order necessary conditions.
关 键 词:概率约束 p-有效点 修正的Frish函数 对偶算法
分 类 号:O221.5[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.147.70