基于Optuna-SAM-LSTM模型的TBM刀盘贯入度超前预测  

Cutterhead Penetration Rate Prediction of Tunnel Boring Machines Based on Optuna-Self-Attention Mechanism-Long Short-Term Memory Model

在线阅读下载全文

作  者:刘赫 满轲 刘晓丽[2] 宋志飞 LIU He;MAN Ke;LIU Xiaoli;SONG Zhifei(College of Civil Engineering,North China University of Technology,Beijing 100144,China;State Key Laboratory of Hydroscience and Hydraulic Engineering,Tsinghua University,Beijing 100084,China)

机构地区:[1]北方工业大学土木工程学院,北京100144 [2]清华大学水沙科学与水利水电工程国家重点试验室,北京100084

出  处:《隧道建设(中英文)》2024年第S2期329-341,共13页Tunnel Construction

基  金:国家重点研发计划项目(2018YFC1504801,2018YFC1504902);国家自然科学基金项目(51522903,51774184);清华大学水沙科学与水利水电工程国家重点实验室资助(2019-KY-03);北方工业大学毓杰项目(216051360020XN199/006)。

摘  要:为建立高效的全断面硬岩隧道掘进机(TBM)掘进参数预测模型以辅助驾驶员进行参数调整,依托引绰济辽工程数据,先采用3σ准则、奇异值分解等方法对工程数据进行处理,再根据灰色关联度法对模型的输入参数进行筛选,接着将自注意力机制(SAM)融入到长短期记忆网络(LSTM)中,并使用Optuna程序对模型训练的最优超参数组合进行搜寻,最后构建出Optuna-SAM-LSTM预测模型。Optuna的10次搜寻试验结果表明:1)模型使用该程序对搜寻得到的超参数组合进行训练均能取得较高的预测精度,且预测结果较为稳定。2)SAM-LSTM模型在对刀盘贯入度进行超前预测时,在未来3个时间步上均展现出高拟合度和低误差;该模型与LSTM、SAM-RNN和RNN模型的预测结果对比显示,SAM-LSTM模型的预测精度显著高于其他3个模型,并且融入自注意力机制的模型预测精度均高于普通模型。3)所提出的Optuna-SAM-LSTM模型在刀盘贯入度的超前预测中表现出色,在实际工程中可为驾驶员留出充足的决策时间来调整参数,以确保TBM施工的安全性和效率。To develop an efficient prediction model for tunneling parameters in full-face hard rock tunnel boring machines(TBMs)that can assist real-time parameter adjustments,a case study is conducted on the Chao′er river to Liaoxi river water-diversion project,and the data from the project are rigorously processed using the 3σcriterion and singular value decomposition method.Following this,the input parameters are selected based on the grey relational analysis method.To enhance the predictive capabilities of the model,a self-attention mechanism(SAM)is integrated into a long short-term memory(LSTM)network,and an Optuna framework is then employed to search the optimal combination of hyperparameters,thus finally establishing an Optuna-SAM-LSTM prediction model.The effectiveness of the Optuna-SAM-LSTM model is validated through 10 search trials conducted using the Optuna framework.The results consistently demonstrate the following:(1)The model trained with the hyperparameters identified by Optuna achieves high predictive accuracy and exhibits remarkable stability across different trials.(2)When predicting the penetration rate of the TBM cutterhead,the SAM-LSTM model displays a high degree of fit and low prediction error over the next three time steps,indicating its robustness in forecasting key operational parameters.Comparative analysis with other models,including LSTM,SAM-recurrent neural network(RNN),and RNN,reveals that the SAM-LSTM model significantly outperforms these alternatives in terms of prediction accuracy.Furthermore,models incorporating the SAM consistently achieves higher accuracy than their conventional counterparts,underscoring the value of this approach.(3)The Optuna-SAM-LSTM model demonstrates exceptional performance in the advance prediction of TBM cutterhead penetration rate.Its application in real-world engineering projects can provide operators with ample decision-making time to adjust parameters,thereby ensuring the safety and efficiency of TBM operations.

关 键 词:隧道工程 全断面硬岩隧道掘进机 掘进参数预测 深度学习 Optuna程序 自注意力机制 

分 类 号:U45[建筑科学—桥梁与隧道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象