Comparative analysis of different machine learning algorithms for urban footprint extraction in diverse urban contexts using high-resolution remote sensing imagery  

使用高分辨率遥感图像对不同城市背景下提取城市足迹的不同机器学习算法进行比较分析

在线阅读下载全文

作  者:GUI Baoling Anshuman BHARDWAJ Lydia SAM 桂宝灵;Anshuman BHARDWAJ;Lydia SAM

机构地区:[1]School of Geosciences,University of Aberdeen,King's College

出  处:《Journal of Geographical Sciences》2025年第3期664-696,共33页地理学报(英文版)

摘  要:While algorithms have been created for land usage in urban settings,there have been few investigations into the extraction of urban footprint(UF).To address this research gap,the study employs several widely used image classification method classified into three categories to evaluate their segmentation capabilities for extracting UF across eight cities.The results indicate that pixel-based methods only excel in clear urban environments,and their overall accuracy is not consistently high.RF and SVM perform well but lack stability in object-based UF extraction,influenced by feature selection and classifier performance.Deep learning enhances feature extraction but requires powerful computing and faces challenges with complex urban layouts.SAM excels in medium-sized urban areas but falters in intricate layouts.Integrating traditional and deep learning methods optimizes UF extraction,balancing accuracy and processing efficiency.Future research should focus on adapting algorithms for diverse urban landscapes to enhance UF extraction accuracy and applicability.

关 键 词:urban footprint mapping high-resolution remote sensing imagery machine learning deep learning segmentanythingmodel 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置] TP181[自动化与计算机技术—控制科学与工程] P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象