基于卷积神经网络的中医医案诊断分类方法  

Classification Method of TCM Medical Records Diagnosis Based on Convolutional Neural Network

在线阅读下载全文

作  者:邱雪峰 查青林[1] 苗震 刘明 李欣依 QIU Xuefeng;ZHA Qinglin;MIAO Zhen;LIU Ming;LI Xinyi(Jiangxi University of Chinese Medicine,Nanchang 330004,China;Affiliated Hospital of Jiangxi University of Chinese Medicine,Nanchang 330006,China;Bodang Hui Nationality Township People's Government,Shangqiu 476824,China)

机构地区:[1]江西中医药大学,江西南昌330004 [2]江西中医药大学附属医院,江西南昌330006 [3]伯党回族乡人民政府,河南商丘476824

出  处:《现代信息科技》2025年第6期39-45,共7页Modern Information Technology

基  金:江西省科技厅重点研发计划项目(20171ACG70011);江西省科技厅重点研发计划项目(20203BBG72W008)。

摘  要:针对中医医案诊断分类研究中上下文语义捕捉不足,难以有效捕捉长距离依赖信息以及分类精确度低等问题,提出了一种结合文本卷积神经网络(TextCNN)和门控循环单元(GRU)的混合模型。首先,利用Word2Vec模型对词向量进行训练,构建局部词向量库。其次,采用文本卷积神经网络对中医医案文本进行特征提取,以捕捉局部重要信息。最后,利用门控循环单元对提取的特征进行上下文信息建模,从而显著增强模型对长依赖关系的处理能力。实验结果表明,该模型在中医医案诊断文本分类任务中表现出色,预测精度达到85.01%,F1值为81.86%。Aiming at the problems of insufficient context semantic capture,difficulty in effectively capturing long-distance dependence information and low classification accuracy in the study of TCM medical records diagnosis and classification,a hybrid model combining Text Convolutional Neural Network(TextCNN)and Gated Recurrent Unit(GRU)is proposed.Firstly,the Word2Vec model is used to train the word vector and construct the local word vector library.Secondly,the TextCNN is used to extract the text features of TCM medical records to capture local important information.Finally,the GRU is used to model the context information of the extracted features,thereby significantly enhancing the model's ability to process long dependencies.The experimental results show that the model performs well in the text classification task of TCM medicals records diagnosis,the prediction accuracy reaches 85.01%,and the F1 value is 81.86%.

关 键 词:中医医案 TextCNN GRU Word2Vec模型 文本分类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象