检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐佳峰 张燕 XU Jiafeng;ZHANG Yan(School of Immigration Management,China People’s Police University,Langfang Hebei 065000,China)
机构地区:[1]中国人民警察大学移民管理学院,河北廊坊065000
出 处:《辽宁警察学院学报》2025年第2期71-77,共7页Journal of Liaoning Police College
基 金:2022年河北省高等学校科学技术研究项目“基于深度学习的证件防伪特征智能检测技术研究”(ZD2022155)。
摘 要:在全球化背景下,护照鉴别对保障国家安全至关重要,现行的护照鉴别手段面临着效率不高与准确性不稳定等问题。随着计算机技术的发展,深度学习在图像识别与特征提取方面表现出色,日趋成为护照鉴别的新方法。本文介绍了深度学习的原理和特点,深度学习在护照鉴别中的应用案例和面临的挑战,提出了相应的优化路径,即提升民警人工智能素养和批判性思维、建设护照信息数据集和优化模型结构、明确人机分工和建立人机协同的评估反馈机制,以期促进护照鉴别手段的优化升级,提高移民管理工作的智能化水平。In the context of globalization,passport identification is crucial for safeguarding national security,and the existing means of passport identification face problems such as low efficiency and unstable accuracy.With the development of computer technology,deep learning is performing well in image recognition and feature extraction,which is becoming a new method for passport identification.This paper introduces the principles and characteristics of deep learning,the application cases and challenges faced by deep learning in passport identification,and puts forward the corresponding optimization paths,namely,improving the police’s artificial intelligence literacy and critical thinking,constructing the passport information dataset and optimizing the model structure,clarifying the human-machine division of labor,and establishing a human-machine collaborative evaluation and feedback mechanism,so as to promote the optimization and upgrading of the means of passport identification,and improve the intelligence level of the immigration management.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.254.235