Critical Perturbation Results for a Mixed Boundary Value Problem  

作  者:Azeb ALGHANEMI Hichem CHTIOUI Moctar MOHAMEDEN 

机构地区:[1]Department of Mathematics,King Abdulaziz University,Jeddah,Saudi Arabia [2]Sfax University,Faculty of Sciences of Sfax,3018 Sfax,Tunisia

出  处:《Chinese Annals of Mathematics,Series B》2025年第1期25-50,共26页数学年刊(B辑英文版)

摘  要:Abstract Let K be a given positive function on a bounded domain Ω of R^(n),n≥3.The authors consider a nonlinear variational problem of the form:-Δu=K|u|^(4/n-2)u in Ω with mixed Dirichlet-Neumann boundary conditions.It is a non-compact variational problem,in the sense that the associated energy functional J fails to satisfy the Palais-Smale condition.This generates concentration and blow-up phenomena.By studying the behaviors of non-precompact flow lines of a decreasing pseudogradient of J,they characterize the points where blow-up phenomena occur,the so-called critical points at infinity.Such a characterization combined with tools of Morse theory,algebraic topology and dynamical system,allow them to prove critical perturbation results under geometrical hypothesis on the boundary part in which the Neumann condition is prescribed.

关 键 词:Critical elliptic equations Variational methods Asymptotic analyzes Critical points at infinity 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象