The Homology Growth for Finite Abelian Covers of Smooth Quasi-projective Varieties  

在线阅读下载全文

作  者:Fenglin LI Yongqiang LIU 

机构地区:[1]School of Mathematical Sciences,University of Science and Technology of China,Hefei 230026,China [2]Institute of Geometry and Physics,University of Science and Technology of China,Hefei 230026,China

出  处:《Chinese Annals of Mathematics,Series B》2025年第1期51-62,共12页数学年刊(B辑英文版)

基  金:supported by the National Key Research and Development Project(No.SQ2020YFA070080);the National Natural Science Foundation of China(No.12001511);the Project of Stable Support for Youth Team in Basic Research Field CAS(No.YSBR-001);the Project of Analysis and Geometry on Bundles of the Ministry of Science and Technology of China and the Fundamental Research Funds for the Central Universities。

摘  要:Let X be a complex smooth quasi-projective variety with a fixed epimorphism ν:π_(1)(X)■H,where H is a finitely generated abelian group with rank H≥1.In this paper,the authors study the asymptotic behaviour of Betti numbers with all possible field coefficients and the order of the torsion subgroup of singular homology associated toν,known as the L^(2)-type invariants.When ν is orbifold effective,explicit formulas of these invariants at degree 1 are give.This generalizes the authors’previous work for H≌Z.

关 键 词:Mahler measure Jump loci Orbifold map L^(2)-Betti number 

分 类 号:O152[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象