Well-Posedness and Asymptotic Estimate for a Diffusion Equation with Time-Fractional Derivative  

在线阅读下载全文

作  者:Zhiyuan LI Xinchi HUANG Masahiro YAMAMOTO 

机构地区:[1]School of Mathematics and Statistics,Ningbo University,Ningbo 315211,Zhejiang,China [2]Corresponding author.Graduate School of Science,The University of Tokyo,Tokyo,Japan [3]Graduate School of Mathematical Sciences,The University of Tokyo,Tokyo,Japan [4]Honorary Member of Academy of Romanian Scientists,Bucuresti,Romania [5]Correspondence member of Accademia Peloritana dei Pericolanti,Palazzo Universita,Messina,Italy

出  处:《Chinese Annals of Mathematics,Series B》2025年第1期115-138,共24页数学年刊(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.12271277,11771270,11801326,91730303);the Japan Society for the Promotion of Science(Nos.20H00117,20F20319);A3 Foresight Program“Modeling and Computation of Applied Inverse Problems”of Japan Society for the Promotion of Science and the Research Institute for Mathematical Sciences,an International Joint Usage/Research Center located in Kyoto University。

摘  要:In this paper,the authors study the well-posedness and the asymptotic estimate of solution for a mixed-order time-fractional diffusion equation in a bounded domain subject to the homogeneous Dirichlet boundary condition.Firstly,the unique existence and regularity estimates of solution to the initial-boundary value problem are considered.Then combined with some important properties,including a maximum principle for a time-fractional ordinary equation and a coercivity inequality for fractional derivatives,the energy method shows that the decay in time of the solution is dominated by the term t-α as t goes to infinity.

关 键 词:Mixed-order fractional diffusion equation Initial-boundary value problem Asymptotic estimate Energy method 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象