检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:俞立平 邱丹萍[3] 姜茸 YU Liping;QIU Danping;JIANG Rong(School of statistics and mathematics,Zhejiang Gongshang University,Hangzhou 310018,China;Collaborative Innovation Center of Statistical Data Engineering Technology&Application,Zhejiang Gongshang University,Hangzhou 310018,China;Guangdong Hong Kong Macao Dawan District E-Commerce Research Center,Guangzhou College of Commerce,Guangzhou 510700,China;Yunnan Key Laboratory of Service Computing,Yunnan University of Finance and Economics,Kunming 650221,China)
机构地区:[1]浙江工商大学统计与数学学院,浙江杭州310018 [2]浙江工商大学统计数据工程技术与应用协同创新中心,浙江杭州310018 [3]广州商学院粤港澳大湾区电子商务研究中心,广东广州510700 [4]云南财经大学云南省服务计算重点实验室,云南昆明650221
出 处:《情报科学》2024年第10期163-170,共8页Information Science
基 金:浙江省自然科学基金重点项目“制造业从数量型创新向质量型创新转型机制研究”(Z21G030004);“浙江省登峰学科(浙江工商大学统计学)资助(2023ZD1A);广州市哲学社科规划2023年度课题“广东省关键核心技术突击创新的政府投资风险防范研究”(2023GZGJ80)
摘 要:【目的/意义】在多属性学术评价中存在三大悖论,一是多属性评价方法众多难以选择问题,二是主客观评价方法之争,三是主流的多属性学术评价均为线性加权汇总方法,这些问题的存在使得多属性评价方法选择的误差问题扑朔迷离。【方法/过程】本文分析了三大悖论产生的原因,并对多属性评价方法的误差问题进行了深入剖析,重点是学术评价的真实值的主观特性,并提出降低多属性评价方法选择系统误差的全新思路。【结果/结论】从评价方法本身、基于统计学的方法选择、组合评价等方法均难以解决学术评价方法选择的系统误差问题;线性主观加权汇总是最好的多属性学术评价方法;多属性评价方法创新仍有必要;学术评价方法的选择问题本质上是自然科学与人文社科的思维的互补问题。【创新/局限】多属性学术评价方法选取的系统误差还有许多待研究的领域,有待进一步优化完善。【Purpose/significance】There are three paradoxes in multi-attribute academic evaluation.First,there are many multiattribute evaluation methods that are difficult to choose.Second,there is a dispute between subjective and objective evaluation methods.Third,the mainstream multi-attribute academic evaluation is linear weighted summary method.The existence of the problems makes the error problem in the selection of multi-attribute evaluation methods complicated and confusing.【Method/process】This paper analyzes the causes of the three paradoxes,and conducts an in-depth analysis of the error problem of multi-attribute evaluation methods,focusing on the subjective characteristics of the true value of academic evaluation,and proposes a new idea to reduce the selection system error of multi-attribute evaluation methods.【Result/conclusion】The research found that it is difficult to solve the systematic error problem in the selection of academic evaluation methods from the evaluation method itself,statistical method selection,and combined evaluation;linear subjective weighted summary is the best multi-attribute academic evaluation method;multi-attribute evaluation method innovation It is still necessary;the selection of academic evaluation methods is essentially a fusion of natural sciences and humanities and social sciences.【Innovation/limitation】There are still many areas to be studied for the systematic errors in the selection of multi-attribute academic evaluation methods,and further optimization and improvement are needed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171