检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宁馨 Ning Xin(People's Public Security University of China Law School,Beijing,100038)
机构地区:[1]中国人民公安大学,北京100038
出 处:《证据科学》2025年第1期103-119,共17页Evidence Science
摘 要:人脸识别结果基于本身所具有的盖然性和相对客观性区别于传统的法定证据种类,导致刑事司法实践中将人脸识别证据强行归入现有法定证据种类,难以对其进行实质化审查。数字时代对全封闭式的法定证据种类界限造成了冲击,在立法层面将人脸识别证据作为单独的证据种类并非合理路径,应当在突破现有法定证据种类封闭性以及传统科学证据滞后性的基础上,将人脸识别证据纳入独立的算法证据的范畴。The fact that facial recognition derived evidence is distinguished from traditional statutory evidence for its probability and relative objectivity,makes facial recognition derived evidence be forcibly classified as one type of existing statutory evidence in the practice of criminal justice,and makes it difficult to conduct substantive reviews on such evidence.The fully enclosed boundaries of statutory evidence types had been challenged in the digital era.Therefore,it is not a reasonable approach to take facial recognition derived evidence as a specific type of statutory evidence.Instead,facial recognition derived evidence should be taken as independent algorithm-based evidence,on the basis of breaking the current enclosed boundaries of statutory evidence types and fixing the lag in the categorization of traditional scientific evidence.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249