The shadow and gamma-ray bursts of a Schwarzschild black hole in asymptotic safety  

在线阅读下载全文

作  者:Yuxuan Shi Hongbo Cheng 

机构地区:[1]Department of Physics,East China University of Science and Technology,Shanghai,200237,China [2]The Shanghai Key Laboratory of Astrophysics,Shanghai,200234,China

出  处:《Communications in Theoretical Physics》2025年第2期119-129,共11页理论物理通讯(英文版)

基  金:partly supported by the Shanghai Key Laboratory of Astrophysics 18DZ2271600。

摘  要:The effects and rules of the dimensionless parameterξon neutrino annihilation v+v→e^(-)+e^(+)dominated gamma-ray bursts are analysed and investigated within the context of black holes in asymptotic safety.We also computationally model photon orbits around black holes,as photons and neutrinos have the same geodesic equations near black holes.We show that the black hole shadow radius decreases with increasingξ.Calculations are made to determine the temperature of the accretion disk surrounding the black hole and the ratio Q/Q_(Newt)of energy deposition per unit time and compared to that of the Newtonian scenario.The accretion disk temperature peaks at a higher temperature due to quantum gravity corrections,which increases the probability of neutrino emission from the black hole.It is interesting to note that larger quantum gravity effects cause the ratio value to significantly decline.In the neutrinoantineutrino annihilation process,the energy deposition rate is sufficient even while the energy conversion is inhibited because of quantum corrections.Gamma-ray bursts might originate from the corrected annihilation process.Additionally,we examine the derivative dQ/dr about the star radius r.The findings demonstrate that the ratio is lowered by the black hole's quantum influence.The neutrino pair annihilation grows weaker the more prominent the influence of quantum gravity.

关 键 词:quantum gravity black hole gamma-ray burst 

分 类 号:P145.8[天文地球—天体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象