基于双光谱成像技术的矿井早期火源识别及抗干扰方法研究  

Research on early fire source identification and anti-interference methods in mines based on dual-spectrum imaging technology

作  者:王炎林 裴晓东[1] 王凯[1] 徐光 WANG Yanlin;PEI Xiaodong;WANG Kai;XU Guang(School of Safety Engineering,China University of Mining and Technology,Xuzhou 221116,China;Shandong Coal Research Institute Co.,Ltd.,Jinan 250014,China)

机构地区:[1]中国矿业大学安全工程学院,江苏徐州221116 [2]山东省煤炭科学研究院有限公司,山东济南250014

出  处:《工矿自动化》2025年第3期122-130,共9页Journal Of Mine Automation

基  金:国家重点研发计划项目(2022YFC3004800);国家自然科学基金面上项目(52374242,52074278)。

摘  要:现有基于图像分析的矿井外因火灾监测方法受矿井环境复杂、干扰源影响较大,单模态方法易将光源误判为火源,多模态方法没有利用温度信息进行火源判定,且在粉尘条件下这两种方法的识别精度较低。针对上述问题,提出一种基于双光谱成像技术的矿井早期火源识别及抗干扰方法。首先采用YOLOv10模型对可见光图像进行实时火源检测,利用红外热成像获取温度分布数据,然后通过Canny边缘检测与图像二值化预处理,消除可见光与红外图像的成像差异,最后采用pHash算法计算可见光与红外图像边缘哈希值的海明距离,并标定阈值(海明距离≤25),判定是否为同一火源,从而有效区分火源与干扰源。实验结果表明:在无粉尘无干扰源工况下,基于双光谱成像技术的矿井早期火源识别及抗干扰方法的准确率达98%,召回率为94%,优于单模态的YOLOv10(准确率为97%,召回率为86%);在粉尘干扰条件下,粉尘覆盖摄像头表面33%时,该方法的准确率和召回率分别为85%,80%,粉尘覆盖摄像头表面66%时,准确率和召回率分别为70%,65%,优于单模态和多模态方法。Existing image analysis-based methods for exogenous mine fire detection are affected by complex mining environments and interference sources.Single-modal methods tend to misjudge light sources as fire sources,while multi-modal methods fail to utilize temperature information for fire source identification.Additionally,both methods have low identification accuracy under dust conditions.To address the above issues,an early fire source identification and anti-interference method for mines based on dual-spectrum imaging technology was proposed.First,the YOLOv10 model was used for real-time fire source detection on visible light images,and infrared thermal imaging was employed to obtain temperature distribution data.Then,Canny edge detection and image binarization preprocessing were applied to eliminate imaging differences between visible light and infrared images.Finally,the pHash algorithm was used to calculate the Hamming distance of the edge hash values between visible light and infrared images,and a threshold(Hamming distance≤25)was set to determine whether they represented the same fire source,thus effectively distinguishing fire sources from interference sources.The experimental results showed that under conditions without dust or interference sources,the accuracy of the early fire source detection and anti-interference method based on dual-spectrum imaging technology reached 98%,with a recall rate of 94%,outperforming the single-modal YOLOv10(accuracy 97%,recall rate 86%).Under dust interference conditions,when 33% of the camera surface was covered by dust,the accuracy and recall rates were 85% and 80%,respectively.When 66% of the camera surface was covered by dust,the accuracy the recall rate were 70% and 65%,which were superior to both single-modal and multi-modal methods.

关 键 词:矿井外因火灾 早期火源识别 双光谱成像技术 可见光 红外光 pHash算法 YOLOv10 海明距离 

分 类 号:TD752.3[矿业工程—矿井通风与安全]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象