检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jürgen Jost Linlin Sun Jingyong Zhu
机构地区:[1]Max Planck Institute for Mathematics in the Sciences,Leipzig 04103,Germany [2]School of Mathematics and Statistics,Guangxi Normal University,Guilin 541004,China [3]School of Mathematics,Sichuan University,Chengdu 610065,China
出 处:《Science China Mathematics》2025年第4期917-938,共22页中国科学(数学英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.12201440);the Fundamental Research Funds for the Central Universities。
摘 要:For a homotopy class[u]of maps between a closed Riemannian manifold M and a general manifold N,we want to find a Dirac-harmonic map with the map component in the given homotopy class.Most known results require the index to be nontrivial.When the index is trivial,the few known results are all constructive and produce uncoupled solutions.In this paper,we define a new quantity.As a byproduct of proving the homotopy invariance of this new quantity,we find a new simple proof for the fact that all the Dirac-harmonic spheres in surfaces are uncoupled.More importantly,by using the homotopy invariance of this new quantity,we prove the existence of Dirac-harmonic maps from manifolds in the trivial index case.In particular,when the domain is a closed Riemann surface,we prove the short-time existence of theα-Dirac-harmonic map flow in the trivial index case.Together with the density of the minimal kernel,we get an existence result for Dirac-harmonic maps from closed Riemann surfaces to K?hler manifolds,which extends the previous result of the first and third authors.This establishes a general existence theory for Dirac-harmonic maps in the context of the trivial index.
关 键 词:Dirac-harmonic map Q-Dirac-harmonic map flow minimal kernel EXISTENCE Kahler manifolds
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90