检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Litan Yan Rui Guo Wenyi Pei
机构地区:[1]Department of Statistics,College of Science,Donghua University,Shanghai 201620,China [2]School of Statistics and Mathematics,Zhejiang Gongshang University,Hangzhou 310018,China
出 处:《Science China Mathematics》2025年第4期939-968,共30页中国科学(数学英文版)
基 金:supported by National Natural Science Foundation of China(Grant No.11971101)。
摘 要:Let B^(a,b)be a weighted-fractional Brownian motion with Hurst indices a and b such that a>-1 and 0≤b<1∧(1+a).In this paper,we consider the linear self-attracting diffusion dX_(t)^(a,b)=dB_(t)^(a,b)−θ(∫t 0(X_(t)^(a,b)−X_(s)^(a,b))ds)dt+νdt with X_(0)^(a,b),whereθ>0 andν∈R are two real parameters.The model is an analog of the linear selfinteracting diffusion(see Cranston and Le Jan(1995)).Under the continuous observation,we study asymptotic behaviors of the least squares estimatorsθˆT andνˆT.In particular,when b>1/2,we obtain a new random variable Z_(1)^(a,b)which is called the Rosenblatt random variable if a=0,and we show that C_(a,b)T^(2-2b)(θ_(T)-θ)converges in distribution to the sum of the chi-square random variable with 1 degree of freedom and the random variable Z_(1)^(a,b).
关 键 词:weighted fractional Brownian motion Malliavin calculus self-attracting diffusion least squares estimation CONSISTENCY asymptotic distribution
分 类 号:O211.6[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49