“提醒服务”何以降低行政负担?——来自成都市温江区案例的发现  

How does the"Reminder Service"Reduce Administrative Burden?--Findings from the Case of Wenjiang District in Chengdu

在线阅读下载全文

作  者:韩啸 李雨霏 HAN Xiao;LI Yufei

机构地区:[1]电子科技大学公共管理学院

出  处:《秘书》2025年第2期3-17,共15页Secretary

基  金:四川省软科学项目“深化政务公开促进政府治理能力研究”(2023JDR0010)。

摘  要:公众不清楚政务服务“哪里办、怎么办、找谁办”的主要原因是信息供需不匹配:虽然政府一直致力于拓展信息渠道、扩大信息覆盖面,但受制于“人找信息”传统模式,依然难以解决“最后一公里”难题。成都市温江区创新政府信息公开模式,在全国首创“提醒服务”,实现“信息找人”的精准匹配。本文对温江区的案例进行分析发现:“提醒服务”是一个结构流程重塑、条线关系优化和价值共创实现的递进过程。在数据基座支撑下重塑信息流、业务流,是决定从“人找信息”到“信息找人”成功转变的关键,但在运行过程中可能面临平台便利度有待提升、信息安全与隐私保护以及信息管理权责模糊等问题。透过本案例,在总结成功经验、过程逻辑的基础上,为政府信息公开助力政务服务提质增效提供新思路。The main reason the public is unclear about"where,how,and whom to approach"for government services lies in the mismatch between information supply and demand.Despite government efforts to expand information channels and coverage,the traditional model of"people seeking information"has hindered the resolution of the"last mile"issue.Wenjiang District in Chengdu has pioneered a new model of government information disclosure by creating a"reminder service"that enables precise matching through"information seeking people".This paper provides an in-depth analysis of the Wenjiang case and reveals that the"reminder service"is a progressive process involving structural process reshaping,streamlining of relationships between departments,and the realization of value co-creation.The transformation from"people seeking information"to"information seeking people"is critically dependent on the restructuring of information and business flows,supported by the data platform.However,challenges such as the need to improve platform usability,concerns over information security and privacy,and unclear legal responsibilities may arise during implementation.Through this case,based on summarizing successful experiences and process logic,it offers new insights into how government information disclosure can enhance the quality and efficiency of public services.

关 键 词:提醒服务 行政负担 政务服务 政府信息公开 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象