检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张丹 Zhang Dan(Sonoscape Medical Corp.,Shenzhen 518000,China)
机构地区:[1]深圳开立生物医疗科技股份有限公司,深圳518000
出 处:《办公自动化》2025年第6期52-54,共3页Office Informatization
摘 要:在超高清视频时代到来以后,大量高质量音视频内容纷纷呈现,为确保音视频内容质量更高,进而为人们提供更优质服务,应该基于机器学习来评估计算音视频质量,了解音视频质量底层关键因素内容。在完成上述技术分析与操作过程中,就能为企业视频会议系统设计提供支持。文章中主要介绍了机器学习、音视频质量评估算法等相关理论内容,然后分析二者结合的评估算法技术应用手段,最后将其运用于实际中,为企业设计视频会议系统。With the advent of the ultra-high-definition(UHD)video era,a significant amount of high-quality audio and video content has become available.To ensure superior audio and video quality and deliver enhanced services to users,machine learning techniques should be employed to assess and quantify audio and video quality,identifying the key factors influencing this quality.Through the completion of this technical analysis and operational process,this approach can support the design of enterprise video conferencing systems.This paper presents the theoretical foundations of machine learning and audio/video quality assessment algorithms,and explores the integration of these technologies into practical applications.Finally,it demonstrates how these combined methodologies can be applied in realworld scenarios to design video conferencing systems for enterprises.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.205