Utilizing machine learning models to grasp water quality dynamic changes in lake eutrophication through phytoplankton parameters  

在线阅读下载全文

作  者:Yong Fang Ruting Huang Yeyin Zhang Jun Zhang Wenni Xi Xianyang Shi 

机构地区:[1]Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration,School of Resources and Environmental Engineering,Anhui University,Hefei 230601,China

出  处:《Frontiers of Environmental Science & Engineering》2025年第2期1-16,共16页环境科学与工程前沿(英文)

基  金:the National Natural Science Foundation of China(Nos.51278001 and U22A20401);the Anhui Province Major Science and Technology Projects(China)(No.202003a0702014)for supporting this work.

摘  要:Phytoplankton serve as vital indicators of eutrophication levels.However,relying solely on phytoplankton parameters,such as chlorophyll-a,limits our comprehensive understanding of the intricate eutrophication conditions in natural lakes,particularly in terms of timely analysis of changes in limiting nutrients and their concentrations.This study presents machine learning(ML)models for predicting and identifying lake eutrophication.Five tree-based ML models were developed using the latest data on hydrological,water quality,and meteorological parameters obtained from 34 sites in the Huating Lake basin over 5 months.The extreme gradient boosting model exhibited high accuracy in predicting the total nitrogen/total phosphorus ratio(TN/TP)(R^(2)=0.88;RMSE=24.60;MAPE=26.14%).Analysis of the TN/TP ratio and output eigenvalue weight revealed that phosphorus plays a crucial role in eutrophication,probably because of the low-flow and deep-water characteristics of the basin.Furthermore,the light gradient boosting machine model exhibited outstanding performance and high accuracy in predicting phytoplankton parameters,especially the Shannon index(H′)(R^(2)=0.92;RMSE=0.11;MAPE=4.95%).The mesotrophic classification of the Huating Lake determined using the H′threshold,coincided with the findings from the H′analysis.Future research should cover a wider range of pollution sources and spatiotemporal dimensions to further validate our findings.Overall,this study highlights the potential of incorporating the TN/TP ratio and phytoplankton parameters into ML techniques for effective monitoring and management of environmental conditions.

关 键 词:Machine learning LAKE PHYTOPLANKTON Water quality 

分 类 号:P73[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象