Optimization of Intelligent Education Systems Based on Reinforcement Learning  

作  者:Sophia LI 

机构地区:[1]Chinese Culture Society

出  处:《Artificial Intelligence Education Studies》2025年第1期53-69,共17页人工智能教育研究(英文)

摘  要:This paper explores how reinforcement learning(RL)can improve intelligent education systems.RL helps make learning personal,flexible,and efficient by choosing actions based on student needs and rewards like better scores or engagement.We study its use in custom learning paths,smart testing,and teacher support,showing how it beats old methods that don’t adapt.The paper also suggests future ideas—like better RL tools,teamwork learning,and mixing RL with big language models—while noting fairness challenges.Using pretend data with 1000 students,we test RL’s power to plan learning step by step.Results show RL can lift learning by 2025%in areas like tutoring and class focus.This work gives a clear plan for using RL to make education smarter and fairer,pointing to a bright future for adaptive learning.

关 键 词:Reinforcement Learning Intelligent Education Personalized Learning Adaptive Assessment Teacher Support 

分 类 号:H31[语言文字—英语]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象